Analytic solution to the problem of three-particle collisions in a model with eikonal Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 73-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-particle eikonal model of the process $3\to3$ is investigated in the case when the relative motions of the particles of each pair correspond to high energies. No other restrictions (such as in the fixed-center approximation) are imposed on the motion of the particles. It is shown that in this case the three-particle problem admits an analytic solution. An explicit expression is found for the off-shell amplitude of the $3\to3$ process; it is obtained by exact summation of the multiple scattering series in a model with eikonal Hamiltonian. On the mass shell, this series terminates (there are no terms with multiplicity higher than three). A formula is obtained that describes the mutual canceling of the terms of higher multiplicity in the series.
@article{TMF_1981_47_1_a5,
     author = {V. E. Kuz'michev and V. F. Kharchenko},
     title = {Analytic solution to the problem of three-particle collisions in a~model with eikonal {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--88},
     year = {1981},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a5/}
}
TY  - JOUR
AU  - V. E. Kuz'michev
AU  - V. F. Kharchenko
TI  - Analytic solution to the problem of three-particle collisions in a model with eikonal Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 73
EP  - 88
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a5/
LA  - ru
ID  - TMF_1981_47_1_a5
ER  - 
%0 Journal Article
%A V. E. Kuz'michev
%A V. F. Kharchenko
%T Analytic solution to the problem of three-particle collisions in a model with eikonal Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 73-88
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a5/
%G ru
%F TMF_1981_47_1_a5
V. E. Kuz'michev; V. F. Kharchenko. Analytic solution to the problem of three-particle collisions in a model with eikonal Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a5/

[1] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy MIAN SSSR im. V. A. Steklova, 69, 1963 | MR | Zbl

[2] Merkurev S. P., “Koordinatnaya asimptotika volnovoi funktsii dlya sistemy trekh chastits”, TMF, 8:2 (1971), 235

[3] Newton R. G., Shtokhamer R., Phys. Rev., A14 (1976), 642 | DOI | MR

[4] Sitenko A. G., UFZh, 4 (1959), 152 | MR

[5] Glauber R., Lectures in Theoretical Physics, eds. W. Brittin, L. Dunham, Interscience Publishers, New York, 1959, 315 pp. | MR

[6] Osborn T. A., “Glauber Theory without the Eikonal Approximation”, Ann. Phys. (N. Y.), 58 (1970), 417 | DOI

[7] Sitenko A. G., EChAYa, 4 (1973), 546

[8] Sitenko A. G., Fortschritte der Physik, 22 (1974), 453 | DOI

[9] Glauber R., “Teoriya stolknoveniya adronov vysokoi energii s yadrami”, UFN, 103 (1971), 641 | DOI

[10] Kuzmichev V. E., Kharchenko V. F., Preprint ITF-79-85R, Kiev, 1979

[11] Kelly R. L., “Eikonal Approximation for Three-Particle Scattering”, Phys. Rev., D4:6 (1971), 1755

[12] Harrington D. R., “Multiple Scattering, the Glauber Approximation, and the Off-Shell Eikonal Approximation”, Phys. Rev., 184:5 (1969), 1745 | DOI | MR