Kowalewski basis for the hydrogen atom
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 67-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The completely integrable problem of Kowalewski's top in classical mechanics is extended to the groups $O(4)$ and $O(3,1)$. For each classical system on the groups $O(4)$, $E(3)$, $O(3,1)$ three inequivalent quantum analogs are found. For the Coulomb problem, this results in the construction of one Kowalewski basis in classical mechanics and three in quantum mechanics.
@article{TMF_1981_47_1_a4,
     author = {I. V. Komarov},
     title = {Kowalewski basis for the hydrogen atom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a4/}
}
TY  - JOUR
AU  - I. V. Komarov
TI  - Kowalewski basis for the hydrogen atom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 67
EP  - 72
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a4/
LA  - ru
ID  - TMF_1981_47_1_a4
ER  - 
%0 Journal Article
%A I. V. Komarov
%T Kowalewski basis for the hydrogen atom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 67-72
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a4/
%G ru
%F TMF_1981_47_1_a4
I. V. Komarov. Kowalewski basis for the hydrogen atom. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a4/