Theory of the strong coupling of a particle and a quantized field with internal degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 55-66
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A canonical Bogolyubov transformation is constructed in the theory of strong coupling of a nonrelativistie nucleon to a pion field, and equations are obtained whose solution makes it possible to calculate the observed characteristics of the “physical” nucleon.
@article{TMF_1981_47_1_a3,
     author = {S. T. Zavtrak and L. I. Komarov and I. D. Feranchuk},
     title = {Theory of the strong coupling of a~particle and a~quantized field with internal degrees of freedom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--66},
     year = {1981},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a3/}
}
TY  - JOUR
AU  - S. T. Zavtrak
AU  - L. I. Komarov
AU  - I. D. Feranchuk
TI  - Theory of the strong coupling of a particle and a quantized field with internal degrees of freedom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 55
EP  - 66
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a3/
LA  - ru
ID  - TMF_1981_47_1_a3
ER  - 
%0 Journal Article
%A S. T. Zavtrak
%A L. I. Komarov
%A I. D. Feranchuk
%T Theory of the strong coupling of a particle and a quantized field with internal degrees of freedom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 55-66
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a3/
%G ru
%F TMF_1981_47_1_a3
S. T. Zavtrak; L. I. Komarov; I. D. Feranchuk. Theory of the strong coupling of a particle and a quantized field with internal degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a3/

[1] Bogolyubov N. N., “Ob odnoi novoi forme adiabaticheskoi teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovym polem”, Ukr. matem. zh., 2:2 (1950), 3–24 | MR | Zbl

[2] Tyablikov S. V., “Adiabaticheskaya forma teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovym polem”, ZhETF, 21:2 (1951), 337 | MR

[3] Khenli E., Tirring V., Elementarnaya kvantovaya teoriya polya, IL, M., 1963 | MR

[4] Shveber S., Bete G., Gofman F., Mezony i polya, t. 2, IL, M., 1956

[5] Solodovnikova E. P., Tavkhelidze A. N., Khrustalev O. A., “Preobrazovanie N. N. Bogolyubova v teorii silnoi svyazi”, TMF, 11:3 (1972), 317

[6] Solodovnikova E. P., Tavkhelidze A. N., “Zadacha dvukh tel v adiabaticheskoi v silnoi svyazi”, TMF, 22:1 (1974), 13–29

[7] Komarov L. I., Krylov E. V., Nguen Fyok Lan, Feranchuk I. D., “Preobrazovanie Bogolyubova v teorii silnoi svyazi tyazheloi chastitsy so skalyarnym polem”, TMF, 32:2 (1977), 262–270 | MR

[8] Komarov L. I., Krylov E. V., Nguen Fyok Lan, Romanova T. S., Feranchuk I. D., Izv. AN BSSR, ser. fiz.-mat. nauk, 1 (1977), 86

[9] Fedorov F. I., DAN BSSR, 2 (1958), 408

[10] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, M., 1958

[11] Pauli V., Trudy po kvantovoi teorii, Nauka, M., 1977, 424 | MR

[12] Krylov E. V., Avtoreferat kand. diss., Minsk, 1977

[13] S. Fibini S., Nuovo Cim., 3 (1956), 764 | DOI

[14] Fried B. D., Phys. Rev., 88 (1952), 1142 | DOI | Zbl