Do extended bodies move along geodesics of Riemannian space-time?
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 3-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motion of an extended self-gravitating body in the gravitational field of another distant body is studied in the post-Newtonian approximation of an arbitrary metric theory of gravitation. Comparison of the acceleration of the center of mass of the extended body with the acceleration of a point body moving in a Riemannian space-time whose metric is formally equivalent to the metric of two moving extended bodies shows that in any metric theory of gravitation possessing energy-momentum conservation laws for the matter and gravitational field taken together the center of mass of an extended body does not, in general, move along a geodesic of Riemannian space-time. Application of the obtained general formulas to the earth-sun system and the use of the lunar laser ranging data show that as the earth moves [n its orbit it executes oscillations with respect to a fiducial geodesic with a period of $\sim1$ h and an amplitude not less than $10^{-2}$ cm, which is a post-Newtonian quantity, so that the deviation of the earth's motion from a geodesic can be detected in a corresponding experiment with post-Newtonian accuracy. The difference between the accelerations of the center of mass of the earth and a test body in the post-Newtonian approximation is $10^{-7}$ of the earth's acceleration. The ratio of the earth's passive gravitational mass (defined as by Will) to its inertial mass is not unity but differs from it by an amount approximately equal to $10^{-8}$.
@article{TMF_1981_47_1_a0,
     author = {V. I. Denisov and A. A. Logunov and M. A. Mestvirishvili},
     title = {Do extended bodies move along geodesics of {Riemannian} space-time?},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--37},
     year = {1981},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a0/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - A. A. Logunov
AU  - M. A. Mestvirishvili
TI  - Do extended bodies move along geodesics of Riemannian space-time?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 3
EP  - 37
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a0/
LA  - ru
ID  - TMF_1981_47_1_a0
ER  - 
%0 Journal Article
%A V. I. Denisov
%A A. A. Logunov
%A M. A. Mestvirishvili
%T Do extended bodies move along geodesics of Riemannian space-time?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 3-37
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a0/
%G ru
%F TMF_1981_47_1_a0
V. I. Denisov; A. A. Logunov; M. A. Mestvirishvili. Do extended bodies move along geodesics of Riemannian space-time?. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a0/

[1] Dicke R. H., “The lecture on gravitation”, Proceed. of the Intern. School of Physics “Enrico Fermi”, New York, 1962, 16–29

[2] Nordtvedt K. Jr., “Equivalence principle for massive bodies”, Phys. Rev., 169:5 (1968), 1014–1025 | DOI

[3] Will C. M., “Parametrized post — Newtonian hydrodynamics and the Nordtvedt effect”, Astrophys. J., 163 (1971), 611–628 | DOI | MR

[4] Dicke R. H., “General relativity: survey and experimental test”, Gravitation and the Universe, Philadelphia, 1969, 19–24

[5] Nordtvedt K. Jr., “Testing relativity with laser ranging to the moon”, Phys. Rev., 170:5 (1968), 1186–1188 | DOI

[6] Thorne K. S., Will C. M., “High-precision tests of general relativity”, Comments Astrophys. and Space Phys., 2:1 (1970), 35–41 | MR

[7] Nordtvedt K. Jr., “Post-Newtonian gravitational effects in lunar laser ranging”, Phys. Rev., D7:8 (1973), 2347–2356 | MR

[8] Williams J. G. et al., “New test of the equivalence principle from lunar laser ranging”, Phys. Rev. Lett., 36:11 (1976), 551–554 | DOI | MR

[9] Shapiro I. I., “Verification of the principle of equivalence, for massive bodies”, Phys. Rev. Lett., 36:11 (1976), 555–558 | DOI

[10] Hulse R. A., Taylor J. H., “Discovery of a pulsar in a binary system”, Astrophys. J., 195:2 (1975), L51–L53 | DOI

[11] Taylor J. H., “Discovery of a pulsar in a binary system”, Ann. N. Y. Acad. Sci., 262 (1975), 490–492 | DOI

[12] Taylor J. H. et al., “Further observations of the binary pulsar PSR $1913+16$”, Astrophys. J., 206:1 (1976), L53–L58 | DOI

[13] Taylor J. H., Fowler L. A., McCulloch P. M., “Measurements of general relativistie effects in the binary pulsar PSR $1913+16$”, Nature, 277 (1979), 437–440 | DOI

[14] Will C. M., Nordtvedt K. Jr., “Preferred-frame theories and an extended PPN formalism”, Astrophys. J., 177 (1972), 757–774 | DOI | MR

[15] Fok V. A., Teoriya prostranstva, vremeni i tyagoteniya, Fizmatgiz, M., 1961

[16] Chandrasekhar S., Contopoulos G., “On a post - Galilean transformation appropriate to the post- Newtonian theory of Einstein, Infeld and Hoffmann”, Proc. Roy. Soc., A298:1453 (1967), 123–141 | DOI | Zbl

[17] Mizner Ch., Torn K., Uiler Dzh., Gravitatsiya, t. 3, Mir, M., 1977 | MR

[18] Zharkov V. N., Vnutrennee stroenie Zemli i planet, Nauka, M., 1978

[19] Logunov A. A. i dr., “Novye predstavleniya o prostranstve-vremeni i gravitatsii”, TMF, 40:3 (1979), 291–328 ; Власов А. А., Денисов В. И., Логунов А. А., Мествиришвили М. А., “Гравитационные эффекты в полевой теории гравитации”, ТМФ, 43:2 (1980), 147–186 ; Денисов В. И., Логунов А. А., Мествиришвили М. А., “Полевая теория гравитации и новые представления о пространстве-времени”, ЭЧАЯ, 12:1 (1981), 3–99 ; Denisov V. I., Logunov A. A., “The field theory of gravitation”, Proceed. of the 9th Intern. conf. on Gen. Rel. and Grav. (Jena, 1980), 468–469 | MR | Zbl | MR | Zbl | MR

[20] Allen K. U., Astrofizicheskie velichiny, Mir, M., 1977