On discrete subgroups of the three-dimensional rotation group
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 335-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A direct and unified method is proposed for constructing irreducible representations for all discrete subgroups of the three-dimensional rotation group. The triangle, tetrahedron, and octahedron groups are considered as examples.
@article{TMF_1981_46_3_a7,
     author = {R. M. Muradyan},
     title = {On discrete subgroups of the three-dimensional rotation group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {335--347},
     year = {1981},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a7/}
}
TY  - JOUR
AU  - R. M. Muradyan
TI  - On discrete subgroups of the three-dimensional rotation group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 335
EP  - 347
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a7/
LA  - ru
ID  - TMF_1981_46_3_a7
ER  - 
%0 Journal Article
%A R. M. Muradyan
%T On discrete subgroups of the three-dimensional rotation group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 335-347
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a7/
%G ru
%F TMF_1981_46_3_a7
R. M. Muradyan. On discrete subgroups of the three-dimensional rotation group. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 335-347. http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a7/

[1] Watanabe H., Operator methods in ligand field theory, Printic-Hall, Englewood Cliffs, New Jersey, 1966

[2] Wheeler J. A., Phys. Rev., 52 (1937), 1083 | DOI | Zbl

[3] Robson D., Nucl. Phys., A308 (1978), 381 | DOI

[4] Case K. M., Karplus R., Yang C. N., “Strange particles and the conservation of isotopic spin”, Phys. Rev., 101 (1956), 874–876 | DOI | MR | Zbl

[5] Fairbairn W. M., Fulton T., Klink W. H., “Finite and disconnected subgroups of $SU_3$ and their application to the elementary particle spectrum”, J. Math. Phys., 5:8 (1964), 1038–1051 | DOI | MR | Zbl

[6] Yamada K., “Finite isospin groups and their experimental consequenses”, Phys. Rev., D18:3 (1978), 935–942

[7] Lomont J. S., Applications of finite groups, Academic press, New York, 1959 | MR | Zbl

[8] Khamermesh M., Teoriya grupp, Mir, M., 1966 | Zbl

[9] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, GIFML, M., 1963

[10] Coxeter H. S. M., Moser W. O. J., Generators and relations for discrete groups, Springer-Verlag, Berlin, 1965 | MR | Zbl

[11] Atkins P. W., Child M. S., Phillips C. S. G., Tables for group theory, Oxford University Press, 1970 | MR | Zbl

[12] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, Leningrad, 1975