Two-dimensional field theory with several condensed phases
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 325-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effective-action method is used to study a two-dimensional theory with four-fermion current-current interaction. A phase transition with respect to the coupling constant from the symmetric to nonsymmetric phase is found. In the different phases, there exist different numbers of Goldstone modes of the Bose excitations as in the anisotropic superfluid phases of ${}^3\operatorname{He}$.
@article{TMF_1981_46_3_a6,
     author = {N. E. Bogdanova and V. N. Popov},
     title = {Two-dimensional field theory with several condensed phases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--334},
     year = {1981},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a6/}
}
TY  - JOUR
AU  - N. E. Bogdanova
AU  - V. N. Popov
TI  - Two-dimensional field theory with several condensed phases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 325
EP  - 334
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a6/
LA  - ru
ID  - TMF_1981_46_3_a6
ER  - 
%0 Journal Article
%A N. E. Bogdanova
%A V. N. Popov
%T Two-dimensional field theory with several condensed phases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 325-334
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a6/
%G ru
%F TMF_1981_46_3_a6
N. E. Bogdanova; V. N. Popov. Two-dimensional field theory with several condensed phases. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 325-334. http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a6/

[1] Osheroff D. D., Richardson R. C., Zee D. M., “Evidence for a new phase of solid $He^3$”, Phys. Rev. Lett., 28:14 (1972), 885–888 | DOI

[2] Leggett A. J., “A theoretical description of the new phases of liquid $He^3$”, Rev. Mod. Phys., 47:2 (1975), 331–414 | DOI

[3] Alonso V., Popov V. N., “Funktsional gidrodinamicheskogo deistviya i boze-spektr sverkhtekuchikh fermi-sistem tipa $He^3$”, ZhETF, 73:4 (1977), 1445–1459

[4] Shifman M. A., Vainshtein A. I., Zakharov V. I., “Resonance properties in quantum chromodynamics”, Phys. Rev. Lett., 42:5 (1979), 297–300 | DOI

[5] Jona-Lasinio G., “Relativistic field theories with symmetry-breaking solutions”, Nuovo Cim., 84:6 (1964), 1790–1795 ; Coleman S., Weinberg E., “Radiactive corrections as the origin of spontaneous symmetry breaking”, Phys. Rev., D7:6 (1973), 1888–1910 | DOI | MR

[6] Gross D. J., Neveu A., “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev., D10:10 (1974), 3235–3253

[7] Schwinger J., “Gauge invariance and mass”, Phys. Rev., 128:5 (1962), 2425–2529 | DOI | MR

[8] Belavin A. A., “Exact solution of the two-dimensional model with asymptotic freedom”, Phys. Lett., B87:1–2 (1979), 117–121 | DOI