Investigation of generalized Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 414-425
Cet article a éte moissonné depuis la source Math-Net.Ru
The properties of a generalized Liouville operator and the propagator corresponding to it are studied in an appropriately chosen function space. The Hille–Yosida theorem is used to prove that the generalized Liouville operator is an infinitesimal generating operator of a strongly continuous, unique semigroup. The conditions under which this semigroup is contractive are considered.
@article{TMF_1981_46_3_a14,
author = {G. A. Rudykh},
title = {Investigation of generalized {Liouville} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {414--425},
year = {1981},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a14/}
}
G. A. Rudykh. Investigation of generalized Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 414-425. http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a14/
[1] Pavlotskii I. P., DAN, 182 (1968), 799
[2] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[3] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 1, Mir, M., 1978 | MR
[5] Pavlotskii I. P., Preprint IPM AN SSSR, No 11, Moskva, 1969
[6] Pavlotzky I. P., Rev. Roum. math. pures et appl., 14 (1969), 1161 | MR