Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 382-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to a differential-geometry analysis of Bäcklund transformations of nonlinear evolution equations possessing a Lax representation. A general property of such equations is formulated, and this makes it possible to find the explicit form of the Bäckluad transformations.
@article{TMF_1981_46_3_a11,
     author = {A. K. Prikarpatskii},
     title = {Geometrical structure and {B\"acklund} transformations of nonlinear evolution equations possessing {a~Lax} representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {382--393},
     year = {1981},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a11/}
}
TY  - JOUR
AU  - A. K. Prikarpatskii
TI  - Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 382
EP  - 393
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a11/
LA  - ru
ID  - TMF_1981_46_3_a11
ER  - 
%0 Journal Article
%A A. K. Prikarpatskii
%T Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 382-393
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a11/
%G ru
%F TMF_1981_46_3_a11
A. K. Prikarpatskii. Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 3, pp. 382-393. http://geodesic.mathdoc.fr/item/TMF_1981_46_3_a11/

[1] Gardner C. S., Green J., Kruskal M., Miura R., “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR

[2] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[3] Zakharov V. E., Takhtadzhyan L. A., Faddeev L. D., “Polnoe opisanie reshenii «sin-Gordon» uravneniya”, DAN SSSR, 219:6 (1977), 1334–1337

[4] Takhtadzhyan L. A., ZhETF, 66:2 (1974), 476–489

[5] Kuznetsov E. A., Mikhailov A. V., “O polnoi integriruemosti dvumernoi klassicheskoi modeli Tirringa”, TMF, 30:3 (1977), 303–314 | MR

[6] Bäcklund transformations, Lect. Notes in Math., 515, ed. R. Miura, N. Y., Springer, 1974 | MR

[7] Manin Yu. I., Sovremennye problemy matematiki, VINITI, M., 1979

[8] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl

[9] Chen H. H., “General derivation of Bäcklund transformations from inverse scattering problems”, Phys. Rev. Lett., 33:15 (1974), 925–928 | DOI | MR | Zbl

[10] Crampin M., Phys. Lett., A66:3 (1978), 170–172 | DOI | MR

[11] Gerdzhikov V. S., Kulish P. P., “Vyvod preobrazovaniya Beklunda v formalizme obratnoi zadachi rasseyaniya”, TMF, 39:1 (1979), 69–74 | MR

[12] Calogero F., Degasperis A., Nuovo Cim., B39:1 (1976), 201–242 | DOI | MR

[13] Hirota R., “A new form of Backlund transformations and its relation to the inverse scattering problem”, Progr. Theor. Phys., 52:5 (1974), 1498–1512 | DOI | MR | Zbl

[14] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1979

[15] Nomidzu K., Gruppy Li i differentsialnaya geometriya, IL, M., 1960 | MR

[16] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[17] Lieb E., Liano M., “Solitons and the delta function fermion gas in Hartree-Fock theory”, J. Math. Phys., 19:4 (1978), 860–868 | DOI | MR

[18] Manakov S. V., “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516

[19] Morris H. C., “Soliton solutions and the higher order Karteweg-de Vries equations”, J. Math. Phys., 18:3 (1977), 530–536 | DOI | MR

[20] Dryuma V. S., Kraevye zadachi matematicheskoi fiziki, Shtiintsa, Kishinev, 1978, 44–51 | MR

[21] Estabrook F., Wahlquist H., “Prolongation structures of nonlinear evolution equations, II”, J. Math. Phys., 17:7 (1976), 1293–1297 | DOI | MR | Zbl

[22] Hermann R., Phys. Rev. Lett., 36 (1976), 835–838 | DOI | MR

[23] Konopelchenko B. G., Preprint IYaF-79-9, SO AN SSSR, Novosibirsk, 1976

[24] Izergin A. G., Kulish P. P., “Massivnaya model Tirringa so znacheniyami v algebre Grassmana”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki, Zapiski nauchnykh seminarov LOMI, 77, Nauka, Leningrad, 1978, 76–83 | MR | Zbl

[25] Golod P. I., Preprint ITF-78-100R, Kiev, 1978

[26] Crampin M., Pirani F., Robinson D., “The soliton connection”, Lett. Math. Phys., 2:1 (1977), 15–19 | DOI | MR | Zbl

[27] Boyer C., Plebansky J., “Heavens and their integral manifolds”, J. Math. Phys., 18:5 (1977), 1022–1031 | DOI | MR

[28] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 75:6 (1978), 1953–1971 | MR

[29] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[30] Lax P., “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[31] Novikov S. P., Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[32] Prikarpatskii A. K., “Ob uravneniyakh Rikkati, integriruemykh v kvadraturakh”, DAN SSSR, 251:5 (1980), 1072–1077 | MR | Zbl

[33] Stepanov V. V., Kurs differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950