Higher approximations in the theory of the average Hamiltonian
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 251-262
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The canonical variant of the Krilov–Bogolyubov–Mitropolskii method of averaging is used to consider the higher approximations in the theory of the average Hamiltonian describing the evolution of a spin system under the influence of 
a pulse sequence. The use of the method of averaging in the resonance case is considered for the example of the pulse sequence $90_y-(\tau-\varphi_x-\tau)^n$. For spin systems with Suhl–Nakamura interaction, two cases are investigated when it is necessary to take
into account the higher orders of the theory of the average Hamiltonian. The
possibility of effective NMR line narrowing in such a situation is demonstrated.
			
            
            
            
          
        
      @article{TMF_1981_46_2_a9,
     author = {L. L. Buishvili and E. B. Volzhan and M. G. Menabde},
     title = {Higher approximations in the theory of the average {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a9/}
}
                      
                      
                    TY - JOUR AU - L. L. Buishvili AU - E. B. Volzhan AU - M. G. Menabde TI - Higher approximations in the theory of the average Hamiltonian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 251 EP - 262 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a9/ LA - ru ID - TMF_1981_46_2_a9 ER -
L. L. Buishvili; E. B. Volzhan; M. G. Menabde. Higher approximations in the theory of the average Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 251-262. http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a9/
