In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 199-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the author are generalized to the case of nonsealar Feynman diagrams. It is shown that the analytically regularized coefficient function $F_\Gamma(\underline q)$ associated with an arbitrary graph $\Gamma$ is a functional in $S'(R^{4k})$ and an analytic function of the regularizing parameters $\lambda_l$ in some nonempty domain, from which it can be continued to the whole of $C^L$ as a meromorphic function with two series of poles (infrared and ultraviolet). Conditions under which the coefficient functions have no infrared divergences as functionals in $S'$ are obtained. It is shown how and under what conditions a coefficient function can be defined as a functional on a subspace of $S(R^{4k})$.
@article{TMF_1981_46_2_a4,
     author = {V. A. Smirnov},
     title = {In frared and ultraviolet divergences of the coefficient functions of {Feynman} diagrams as tempered {distributions.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--212},
     year = {1981},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a4/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 199
EP  - 212
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a4/
LA  - ru
ID  - TMF_1981_46_2_a4
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 199-212
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a4/
%G ru
%F TMF_1981_46_2_a4
V. A. Smirnov. In frared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a4/

[1] Smirnov V. A., “Infrakrasnye i ultrafioletovye raskhodimosti koeffitsientnykh funktsii feinmanovskikh diagramm kak funktsionalov iz $S'$, I”, TMF, 44:3 (1980), 307–320 | MR

[2] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[3] Anikin S. A., Zavyalov O. I., Karchev N. I., “Infrakrasnye raskhodimosti funktsii Grina i perenormirovka v bezmassovykh teoriyakh, I”, TMF, 44:3 (1980), 291–306 | MR

[4] Löwenstein J., Zimmermann W., “The Power Counting Theorem for Feynman Integrals with Zero-Mass Propagators”, Commun. Math. Phys., 44:1 (1975), 73–86 | DOI | MR

[5] Speer E., “Ultraviolet and Infrared Singularity Structure of Generic Feynman Amplitudes”, Ann. Inst. H. Poincaré, 23 (1975), 1–21 | MR

[6] Kosinski P., Maslanka P., “Infrared Singularities at Exceptional Momenta”, J. Phys. A, 12:6 (1979), L133–L134 | DOI | MR