Statistical theory of nonequilibrium fluctuations with large correlation range
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 263-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The reduced description method is used to obtain general equations describing the evolution of the nonequilibrium fluctuations of the hydrodynamic parameters at times $t\gg\tau_r$ ($\tau_r$ is the relaxation time), when states with large nonequilibrium correlation range arise in the system. The part played in the kinetics of the fluctuations of the operation of averaging the hydrodynamic parameters over physically infinitesimally small volume elements is elucidated. Asymptotic representations are obtained for various “averages” of the physical quantities in this region of times and power relaxation laws are derived.
@article{TMF_1981_46_2_a10,
     author = {S. V. Peletminskii and S. S. Plokhov and V. I. Prikhod'ko},
     title = {Statistical theory of nonequilibrium fluctuations with large correlation range},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--278},
     year = {1981},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a10/}
}
TY  - JOUR
AU  - S. V. Peletminskii
AU  - S. S. Plokhov
AU  - V. I. Prikhod'ko
TI  - Statistical theory of nonequilibrium fluctuations with large correlation range
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 263
EP  - 278
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a10/
LA  - ru
ID  - TMF_1981_46_2_a10
ER  - 
%0 Journal Article
%A S. V. Peletminskii
%A S. S. Plokhov
%A V. I. Prikhod'ko
%T Statistical theory of nonequilibrium fluctuations with large correlation range
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 263-278
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a10/
%G ru
%F TMF_1981_46_2_a10
S. V. Peletminskii; S. S. Plokhov; V. I. Prikhod'ko. Statistical theory of nonequilibrium fluctuations with large correlation range. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 263-278. http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a10/

[1] Dorfmann J. R., Cohen E. G. D., “Velocity Correlation Functions in Two and Three Dimensions”, Phys. Rev. Lett., 25:18 (1970), 1257–1260 ; Phys. Rev., A6 (1972), 776 ; A12 (1975), 292 | DOI | DOI | DOI

[2] Ernst M. H., Hauge E. N., van Leewen J. M., “Asymptotic Time Behavior of Correlation Functions”, Phys. Rev. Lett., 25:18 (1970), 1254–1256 ; Phys. Rev., A4 (1971), 2055 | DOI | DOI

[3] Bogolyubov N. N., “O stokhasticheskikh protsessakh v dinamicheskikh sistemakh”, EChAYa, 9:4 (1978), 501–579 | MR

[4] Inozemtseva N. G., Sadovnikov B. I., “Uravnenie Boltsmana-Enskoga i asimptotika vremennykh avtokorrelyatsionnykh funktsii”, TMF, 31:2 (1977), 260–273 | MR

[5] Peletminskii S. V., Prikhodko V. I., “Metod asimptoticheskikh operatorov v statisticheskoi mekhanike. II: Prostranstvenno-neodnorodnye sostoyaniya”, TMF, 12:2 (1972), 283–301 | MR

[6] Akhiezer A. I., Peletminskii S. V., Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[7] Zubarev D. N., Khazanov A. M., “Obobschennoe uravnenie Fokkera-Planka i postroenie proektsionnykh operatorov dlya razlichnykh metodov sokraschennogo opisaniya neravnovesnogo sostoyaniya”, TMF, 31:1 (1978), 69–80 | MR

[8] Kavasaki K., “Dinamicheskaya teoriya fluktuatsii vblizi kriticheskikh tochek”, Kvantovaya teoriya polya i fizika fazovykh perekhodov, Mir, M., 1975

[9] Onsager L., Phys. Rev., 37 (1931), 405 | DOI | Zbl