Simple method of calculating the critical indices in the $1/n$ expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for calculating critical indices based on the skeleton equations for the propagators; it yields equations for the indices of the type of self-consistent field equations. When these equations are iterated, the usual $1/n$ expansion of the indices is obtained. The method makes it possible to calculate the indices $\eta$ and $\nu$ in the order $1/n^2$ for any number of dimensions.
@article{TMF_1981_46_2_a1,
     author = {A. N. Vasil'ev and Yu. M. Pis'mak and Yu. R. Khonkonen},
     title = {Simple method of calculating the critical indices in the $1/n$~expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {157--171},
     year = {1981},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a1/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - Yu. M. Pis'mak
AU  - Yu. R. Khonkonen
TI  - Simple method of calculating the critical indices in the $1/n$ expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 157
EP  - 171
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a1/
LA  - ru
ID  - TMF_1981_46_2_a1
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A Yu. M. Pis'mak
%A Yu. R. Khonkonen
%T Simple method of calculating the critical indices in the $1/n$ expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 157-171
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a1/
%G ru
%F TMF_1981_46_2_a1
A. N. Vasil'ev; Yu. M. Pis'mak; Yu. R. Khonkonen. Simple method of calculating the critical indices in the $1/n$ expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/TMF_1981_46_2_a1/

[1] Abe R., “Critical exponent $\eta$ up to $1/n^2$ for the three-Dimensional System with Short-Range Interaction”, Progr. Theor. Phys., 49:6 (1973), 1877–1888 | DOI

[2] Okabe Y., Oku M., Abe R., “$1/n$ Expansion Up to Order $1/n^2$, I”, Progr. Theor. Phys., 59:6 (1978), 1825–1833 | DOI

[3] Okabe Y., Oku M., “$1/n$ Expansion Up to Order $1/n^2$. II; III”, Progr. Theor. Phys., 60:5 (1978), 1277–1297 | DOI

[4] Okabe Y., Oku M., “$1/n$ Expansion Up to Order $1/n^2$, IV”, Progr. Theor. Phys., 61:2 (1979), 443–451 | DOI | MR

[5] Brezin E., Le Guillou J. G., Zinn-Justin J., Phase Transitions and Critical Phenomena, eds. G. Domb, M. Green, Academic Press, New York, 1976 | MR

[6] Berlin T. H., Kac M., Phys. Rev., 86 (1952), 821 | DOI | MR | Zbl

[7] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[8] Aref'eva I. Ya., Nissimov E. R., Pacheva S. J., “BPHZL Renormalization of $1/N$ Expansion and Critical Behaviour of the Three-Dimensional Chiral Field”, Commun. Math. Phys., 71 (1980), 213–246 | DOI | MR

[9] Brezin E., Zinn-Justin J., Phys. Rev., B14 (1976), 3110 | DOI

[10] Ma S., Phys. Rev., A7 (1973), 2172