Formulation of the relativistic mechanics of systems of interacting particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 50-63
Voir la notice de l'article provenant de la source Math-Net.Ru
A Poincaré invariant formulation of classical relativistic mechanics of a system of $n$ interacting particles is given. The equations of motion are the equations of the characteristics of a Pfaffian form, which relates the action element to the elements of the $4n$ coordinates of the system. The characteristics are found on a subsurface defined by $n$ constraints, which include the particle masses.
A canonical transformation to collective variables for two particles is found, this satisfying the conditions of covarianee and the correct nonrelativistic limit. The action satisfies $n$ Hamilton–Jacobi equations. The scattering of two particles is considered. The nonuniqueness of the worldlines of the particles in the interaction region is discussed.
@article{TMF_1981_46_1_a4,
author = {N. P. Klepikov and A. N. Shatnii},
title = {Formulation of the relativistic mechanics of systems of interacting particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {50--63},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a4/}
}
TY - JOUR AU - N. P. Klepikov AU - A. N. Shatnii TI - Formulation of the relativistic mechanics of systems of interacting particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 50 EP - 63 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a4/ LA - ru ID - TMF_1981_46_1_a4 ER -
N. P. Klepikov; A. N. Shatnii. Formulation of the relativistic mechanics of systems of interacting particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a4/