Perturbation theory and the exchange interaction in the one-dimensional Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 132-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of a diagram technique for Hubbard operators, a perturbation theory is formulated that takes into account scale renormalization of anomalous vertices. For the one-dimensional Hubbard model with strong correlation and quarter-filled band this perturbation theory is used to calculate the exchange interaction in a dimerized chain as a function of the dimerization and the parameters of the model.
@article{TMF_1981_46_1_a12,
     author = {V. M. Zharkov},
     title = {Perturbation theory and the exchange interaction in the one-dimensional {Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {132--138},
     year = {1981},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a12/}
}
TY  - JOUR
AU  - V. M. Zharkov
TI  - Perturbation theory and the exchange interaction in the one-dimensional Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 132
EP  - 138
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a12/
LA  - ru
ID  - TMF_1981_46_1_a12
ER  - 
%0 Journal Article
%A V. M. Zharkov
%T Perturbation theory and the exchange interaction in the one-dimensional Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 132-138
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a12/
%G ru
%F TMF_1981_46_1_a12
V. M. Zharkov. Perturbation theory and the exchange interaction in the one-dimensional Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 132-138. http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a12/

[1] Emery V. J., “New Mechanism for a Phonon Anomaly and Lattice Distortion in Quasi-One-Dimentional Conductor”, Phys. Rev. Lett., 37 (1976), 107 | DOI

[2] Lee P. A., Rice T. M., Klemm R. A., “Role of interchain coupling in linear conductor”, Phys. Rev., B15 (1977), 2984 | DOI

[3] Klemm R. A., Larkin A. I., “4th responce function in the Tomonaga model”, Phys. Rev., B19 (1979), 6119 | DOI

[4] Bernasconi J., Rice M. J., Schneider W. R., Strassler S., “Peierls transition in the strong-coupling Hubbard chain”, Phys. Rev., B12 (1975), 1090 | DOI

[5] Klein D. J., Seitz W. A., “Partially filled linear Hubbard model near the atomic limit”, Phys. Rev., B10 (1974), 3217 | DOI

[6] Hubbard J., “Electron correlation in narrow energy band. IV: The atomic representation”, Proc. Roy. Soc., A285 (1965), 542 | DOI | MR

[7] Zaitsev R. O., “Diagrammnaya tekhnika i gazovoe priblizhenie v modeli Khabbarda”, ZhETF, 70 (1975), 1100

[8] Zaitsev R. O., “Nizkotemperaturnye fazovye perekhody v modeli Khabbarda”, FTT, 19 (1977), 3204

[9] Hirch J. E., Mazenko G., “Renormalization-group transformation for quantum lattice systems at zero temperature”, Phys. Rev., B19 (1979), 2656 | DOI

[10] Field J. N., “Spectral excitation in the one-dimensional spin-$1/2$ dimerazed Heisenberg chain: A renormalization-group approach”, Phys. Rev., B19 (1979), 2637 | DOI

[11] Castellani C., Feinberg D., Ranninger J., “Electronic and magnetic correlation in an itinerant system of coupled diamagnetic pairs of electrons”, J. Phys., C12 (1979), 1541

[12] Izyumov Yu. A., Kassan-ogly F. A., Skryabin Yu. N., Polevye metody v teorii ferromagnetizma, Nauka, M., 1974, gl. II, s. 65 | MR

[13] Castellani C., Di Castro C., “Arbitrariness and symmetry properties of the functional formulation of the Hubbard Hamiltonian”, Phys. Lett., 270 (1978), 37

[14] Sawatzky C. A., Huizinga S., Kommendeur J., “Electronic structure of the three phases in $MEM$ $(TCNQ)_2$”, Proc. Conf. 1-D. Conductors, II, Dubrovnik, 1978, 34