The singularities of Feynman diagrams in the coordinate space and the $\alpha$-representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 27-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\alpha$-representation is used to prove restrictions on the wave front of Feynman diagrams in the coordinate space, and also to establish the form of a singularity lying on the surface $\operatorname{det}S=0$ ($S$ is the matrix composed of the elements $s_{jj'}=(x_j-x_{j'})^2$) for the simplest diagram with four external vertices.
@article{TMF_1981_46_1_a1,
     author = {V. A. Smirnov},
     title = {The singularities of {Feynman} diagrams in the coordinate space and the $\alpha$-representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {27--32},
     year = {1981},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a1/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - The singularities of Feynman diagrams in the coordinate space and the $\alpha$-representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 27
EP  - 32
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a1/
LA  - ru
ID  - TMF_1981_46_1_a1
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T The singularities of Feynman diagrams in the coordinate space and the $\alpha$-representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 27-32
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a1/
%G ru
%F TMF_1981_46_1_a1
V. A. Smirnov. The singularities of Feynman diagrams in the coordinate space and the $\alpha$-representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 46 (1981) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/TMF_1981_46_1_a1/

[1] V. A. Smirnov, TMF, 36 (1978), 183 | MR

[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 2, «Mir», 1978 | MR

[3] V. A. Smirnov, TMF, 41 (1979), 330 | MR

[4] V. A. Smirnov, TMF, 44 (1980), 307 | MR

[5] T. Kawai, Publ. RIMS, Kyoto Univ., 15 (1979), 767 | DOI | MR | Zbl