Quasiclassical expansion of the amplitude of potential scattering
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 390-393
Cet article a éte moissonné depuis la source Math-Net.Ru
A simple method is proposed for calculating the corrections of higher orders in the expansion with respect to the quasielassical parameter of the angle-dependent amplitude of scattering on a spherically symmetric potential. The approach is based on the recently proposed representation of the complex deflection angIe for the amplitude. An explicit expression for the first-order correction is given.
@article{TMF_1980_45_3_a8,
author = {V. N. Ostrovskii},
title = {Quasiclassical expansion of the amplitude of potential scattering},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {390--393},
year = {1980},
volume = {45},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a8/}
}
V. N. Ostrovskii. Quasiclassical expansion of the amplitude of potential scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 390-393. http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a8/
[1] A. V. Kuzmenko, TMF, 29 (1976), 52 | MR
[2] A. N. Vasilev, A. V. Kuzmenko, TMF, 31 (1977), 313 | MR
[3] A. V. Kuzmenko, TMF, 35 (1978), 282
[4] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, «Nauka», 1975 | MR
[5] M. Rosen, D. R. Yennie, J. Math. Phys., 5 (1964), 1505 | DOI | MR | Zbl
[6] R. Bernstein, Adv. Chem. Phys., 10 (1966), 75 | DOI
[7] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR
[8] Yu. N. Demkov, V. N. Ostrovskii, TMF, 42 (1980), 223