Path integral over branching paths
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 329-345
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A heuristic definition is given of a Feynman path integral over branching paths. It is used to solve the Cauchy problem for the model Hartree equation in a closed form. A number of properties of the solution are derived from an integral representation. In particular, the quasiclassical asymptotic behavior, the exact solution in the Gaussian case, and the perturbation series are described. An existence theorem is proved for the simplest path integral over branching paths.
			
            
            
            
          
        
      @article{TMF_1980_45_3_a3,
     author = {V. P. Maslov and A. M. Chebotarev},
     title = {Path integral over branching paths},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--345},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a3/}
}
                      
                      
                    V. P. Maslov; A. M. Chebotarev. Path integral over branching paths. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 329-345. http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a3/
