Plane waves on a sphere and some applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 421-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fourier analysis on a sphere of dimension $d\geqslant 2$ is developed in a form that recalls Fourier analysts in flat space to the maximal extent possible. Plane waves – the kernels of the corresponding integral transforms – are generalized functions, for which a regularization is defined; completeness relations, finite-difference equations, and a composition theorem are found. In the case $d=4$, these functions are used for the transition to the Euclidean expressions in the commutator functions of field theory with a curved momentum space; for $d=3$, they are used to describe a class of states in a Coulomb field.
@article{TMF_1980_45_3_a11,
     author = {I. P. Volobuev},
     title = {Plane waves on a~sphere and some applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--426},
     year = {1980},
     volume = {45},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a11/}
}
TY  - JOUR
AU  - I. P. Volobuev
TI  - Plane waves on a sphere and some applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 421
EP  - 426
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a11/
LA  - ru
ID  - TMF_1980_45_3_a11
ER  - 
%0 Journal Article
%A I. P. Volobuev
%T Plane waves on a sphere and some applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 421-426
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a11/
%G ru
%F TMF_1980_45_3_a11
I. P. Volobuev. Plane waves on a sphere and some applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 3, pp. 421-426. http://geodesic.mathdoc.fr/item/TMF_1980_45_3_a11/

[1] V. G. Kadyshevskii, Problemy teoreticheskoi fiziki, Sb., posvyaschennyi pamyati I. E. Tamma, «Nauka», 1972 | MR

[2] A. F. Donkov i dr., Bolg. fiz. zh., 1, 58 ; 150 ; (1974), 233 ; 2 (1975), 3 | MR | MR | MR | MR

[3] V. G. Kadyshevskii, Preprint OIYaI R2-5717, Dubna, 1971

[4] R. M. Mir-Kasimov, Preprint OIYaI E2-11893, Dubna, 1978

[5] N. N. Bogolyubov, B. V. Medvedev, M. K. Polivanov, Voprosy teorii dispersionnykh sootnoshenii, Fizmatgiz, 1958 | MR

[6] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, «Nauka», 1969 | MR

[7] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[8] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cim., 55A (1968), 233 | DOI

[9] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, EChAYa, 2:3 (1972), 636

[10] A. O. Gelfond, Ischislenie konechnykh raznostei, Fizmatgiz, 1967 | MR

[11] K. Symanzik, J. Math. Phys., 7 (1966), 510 | DOI | MR

[12] K. Symanzik, “Euclidean Quantum Field Theory”, Coral Gables Conference on Fundamental Interactions at High Energies, Gordon Breach, New-York, 1969

[13] I. P. Volobuev, TMF, 28 (1976), 331 | MR

[14] V. A. Fok, Izv. AN SSSR, otd. mat. i est. nauk, 1935, no. 2, 169

[15] I. Koulson, Valentnost, «Mir», 1965

[16] A. N. Perelomov, V. S. Popov, ZhETF, 50 (1966), 179