Relativistic adiabatic perturbation theory for degenerate levels
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 199-209
Cet article a éte moissonné depuis la source Math-Net.Ru
Secular operator $T$ is constructed on the basis of the total $S$-matrix and $T$ is proved to be finite in the adiabatic and ultra-violet sense. This secular operator is reduced to the sum of Feynman diagrams and the contributions of the first and second order of the perturbation theory with respect to the electron interaction are calculated.
@article{TMF_1980_45_2_a4,
author = {M. A. Braun and A. D. Gurchumeliya},
title = {Relativistic adiabatic perturbation theory for degenerate levels},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--209},
year = {1980},
volume = {45},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a4/}
}
M. A. Braun; A. D. Gurchumeliya. Relativistic adiabatic perturbation theory for degenerate levels. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/TMF_1980_45_2_a4/
[1] M. Gell-Mann, F. Low, Phys. Rev., 84 (1951), 350 | DOI | MR | Zbl
[2] T. Morita, Prog. Theor. Phys., 29 (1963), 351 | DOI | MR | Zbl
[3] V. V. Tolmachev, Teoriya fermi-gaza, MGU, 1973
[4] Yu. Dmitriev, Int. J. Quant. Chem., 9 (1975), 1033 | DOI
[5] L. N. Ivanov, U. I. Safronova, Int. J. Quant. Chem., IX (1975), 711 | DOI
[6] M. A. Braun, TMF, 34 (1978), 59