Probability of tunneling through potential barriers in more than one dimension
Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 1, pp. 64-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Probabilities of tunneling through two-dimensional and axially symmetrical potential barriers are calculated for the wave falling on a caustic by the angle near $90^\circ$. The results are applied to the calculation of the broadening of energy levels in a potential well in an external field and the splitting in a double potential well. In the case of motion with small angular moments in wells the formulas obtained coincide with those known before. Under the special assumptions the probability of tunneling through a potential barrier of arbitrary dimension is calculated.
@article{TMF_1980_45_1_a5,
     author = {M. Yu. Sumetsky},
     title = {Probability of~tunneling through potential barriers in~more than one dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--75},
     year = {1980},
     volume = {45},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_45_1_a5/}
}
TY  - JOUR
AU  - M. Yu. Sumetsky
TI  - Probability of tunneling through potential barriers in more than one dimension
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 64
EP  - 75
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_45_1_a5/
LA  - ru
ID  - TMF_1980_45_1_a5
ER  - 
%0 Journal Article
%A M. Yu. Sumetsky
%T Probability of tunneling through potential barriers in more than one dimension
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 64-75
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_45_1_a5/
%G ru
%F TMF_1980_45_1_a5
M. Yu. Sumetsky. Probability of tunneling through potential barriers in more than one dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 45 (1980) no. 1, pp. 64-75. http://geodesic.mathdoc.fr/item/TMF_1980_45_1_a5/

[1] U. Miller, Vychislitelnye metody v fizike atomnykh i molekulyarnykh stolknovenii, «Mir», 1974

[2] B. M. Smirnov, Asimptoticheskie metody v teorii atomnykh stolknovenii, Atomizdat, 1973

[3] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, LGU, 1975

[4] R. Ring, Dzh. Rasmussen, G. Massman, EChAYa, 7 (1976), 916

[5] H. Hofman, Nucl. Phys., A224 (1974), 116 | DOI

[6] G. V. Dubrovskii, M. Yu. Sumetskii, TMF, 32 (1977), 380

[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, «Nauka», 1972 | MR

[8] M. Yu. Sumetskii, G. V. Dubrovskii, DAN SSSR, 245 (1979), 74

[9] O. B. Firsov, ZhETF, 21 (1951), 1001

[10] B. M. Smirnov, ZhETF, 46 (1964), 1017

[11] M. Yu. Sumetskii, G. V. Dubrovskii, YaF, 29 (1979), 1406 | MR

[12] M. I. Chibisov, ZhETF, 76 (1979), 1898

[13] E. L. Duman, L. I. Menshikov, ZhETF, 77 (1979), 859

[14] Yu. N. Demkov, G. F. Drukarev, ZhETF, 47 (1964), 918

[15] B. M. Smirnov, M. I. Chibisov, ZhETF, 49 (1965), 841

[16] A. M. Perelomov, V. S. Popov, M. V. Terentev, ZhETF, 50 (1966), 1393

[17] N. L. Manakov, V. D. Ovsyannikov, L. P. Rapoport, Opt. spekt., 58 (1975), 206

[18] L. P. Rapoport, B. A. Zon, N. L. Manakov, Teoriya mnogofotonnykh protsessov v atomakh, Atomizdat, 1978

[19] G. Darewych, S. Neamtan, Nucl. Instr. Meth., 21 (1963), 247 | DOI

[20] V. P. Zhdanov, M. I. Chibisov, ZhETF, 70 (1976), 2087