Quadratic bundle and nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 342-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of nonlinear evolution equations solvable by means of the inverse scattering problem method for the quadratic bundle $$ L_\lambda\psi=\left[i\begin{pmatrix}1&0\\0&-1\end{pmatrix}\frac{d}{dx}+\lambda\begin{pmatrix}0&q(x)\\p(x)&0\end{pmatrix}-\lambda^2\right]\psi(x,\lambda)=0 $$ is described. It is shown that all the equations from this class are completely integrable hamiltonian systems; the corresponding “action-angle” variables are explicitly calculated. For $q=\varepsilon p^*$, $\varepsilon=\pm1$ this class contains such physically interesting equations as the modified nonlinear Schrödinger equation ($iq_t+q_{xx}-i\varepsilon(q^2q^*)_x=0$), the massive Thirring model and others.
@article{TMF_1980_44_3_a4,
     author = {V. S. Gerdjikov and M. I. Ivanov and P. P. Kulish},
     title = {Quadratic bundle and nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {342--357},
     year = {1980},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a4/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - M. I. Ivanov
AU  - P. P. Kulish
TI  - Quadratic bundle and nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 342
EP  - 357
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a4/
LA  - ru
ID  - TMF_1980_44_3_a4
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A M. I. Ivanov
%A P. P. Kulish
%T Quadratic bundle and nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 342-357
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a4/
%G ru
%F TMF_1980_44_3_a4
V. S. Gerdjikov; M. I. Ivanov; P. P. Kulish. Quadratic bundle and nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 342-357. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a4/

[1] E. Mjolhus, J. Plasma Physics, 16 (1976), 321 | DOI

[2] D. Kaup, A. Newell, J. Math. Phys., 19 (1978), 798 | DOI | MR | Zbl

[3] L. D. Faddeev, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 3, VINITI, 1974, 93 | MR

[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[5] A. V. Mikhailov, Pisma ZhETF, 23 (1976), 356; Е. А. Кузнецов, А. В. Михайлов, ТМФ, 30 (1977), 303

[6] V. S. Gerdzhikov, E. Kh. Khristov, Preprint OIYaI E2-12742, Dubna, 1979

[7] P. P. Kulish, A. G. Reiman, Zap. nauch. seminarov LOMI, 77 (1978), 134 | MR | Zbl

[8] V. E. Zakharov, L. A. Takhtadzhyan, TMF, 38 (1979), 26 ; В. Е. Захаров, А. В. Михайлов, ЖЭТФ, 74 (1978), 1953 | MR | MR

[9] V. S. Gerdzhikov, E. Kh. Khristov, Preprint OIYaI R5-11668, Dubna, 1978

[10] V. S. Gerdzhikov, E. Kh. Khristov, Preprint OIYaI E2-12731, Dubna, 1979 | MR

[11] D. Kaup, J. Math. Ann. and Appl., 54 (1976), 849 | DOI | MR | Zbl

[12] D. Kaup, A. Newell, Adv. Math., 31 (1979), 67 | DOI | MR | Zbl