Supersymmetric lagrangian for particles in proper time
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 321-326
Cet article a éte moissonné depuis la source Math-Net.Ru
A point particle in superspace is considered. As an action for such a particle, the element of length of the particle trajectory is used. Due to the using of indegenerate metrics in the superspace, the quantization is performed completely and the spectrum of physical states is found which contains three irreducible supermultiplets split by mass. Two of these supermultiplets are scalar ones and the third is the vector one.
@article{TMF_1980_44_3_a2,
author = {D. V. Volkov and A. I. Pashnev},
title = {Supersymmetric lagrangian for particles in~proper time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {321--326},
year = {1980},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a2/}
}
D. V. Volkov; A. I. Pashnev. Supersymmetric lagrangian for particles in proper time. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 321-326. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a2/
[1] D. V. Volkov, S. V. Peletminskii, ZhETF, 37 (1959), 170 | Zbl
[2] I. L. Martin, Proc. Roy. Soc., 251A (1959), 536 | DOI | Zbl
[3] F. A. Berezin, M. S. Marinov, Pisma ZhETF, 21 (1975), 678
[4] L. Brink, S. Deser, B. Zumino, P. DiVecchia, P. Howe, Phys. Lett., 64B (1976), 435 | DOI
[5] L. Brink, P. DiVecchia, P. Howe, Nucl. Phys., 118B (1977), 76 | DOI | MR
[6] R. Casalbuoni, Nuovo Cim., 33A (1976), 389 | DOI | MR
[7] V. P. Akulov, D. V. Volkov, Pisma ZhETF, 16 (1972), 621
[8] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR
[9] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatgiz, 1963 | MR