Application of averaging to magnetic resonance problems in solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 414-420
Cet article a éte moissonné depuis la source Math-Net.Ru
The Krylov–Bogoliubov–Mitropolsky averaging method is used to derive the master equation describing nonequilibrium processes. Two typical problems of magnetic resonance in solids are considered by this method, the magnetic resonance saturation and spin-lattice relaxation. The above method can be easily generalised to describe other types of nonequilibrium processes.
@article{TMF_1980_44_3_a13,
author = {L. L. Buishvili and M. G. Menabde},
title = {Application of~averaging to~magnetic resonance problems in~solids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {414--420},
year = {1980},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a13/}
}
L. L. Buishvili; M. G. Menabde. Application of averaging to magnetic resonance problems in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 414-420. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a13/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR
[2] B. N. Provotorov, ZhETF, 41 (1961), 1582
[3] R. Zwanzig, J. Chem. Phys., 33 (1960), 1338 | DOI | MR
[4] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971
[5] S. V. Peletminskii, A. A. Yatsenko, ZhETF, 53 (1967), 1327
[6] B. Robertson, Phys. Rev., 144 (1966), 151 | DOI | MR | Zbl
[7] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, «Nauka», 1974 | MR
[8] Dzh. Ulenbek, UFN, 103 (1971), 7
[9] N. N. Bogolyubov, Preprint OIYaI 1451, Dubna, 1963
[10] A. Abragam, Yadernyi magnetizm, IL, 1963
[11] K. Gorter, Paramagnitnaya relaksatsiya, IL, 1949