Symmetry groups of the Lagrangians of chiral fields with values on $S^2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 410-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All the symmetry groups of the lagrangian of chiral field taking value in $S^2$ are constructed. It is shown that there are only seven different admissible point groups, five of which are infinite. The corresponding lagrangians are pointed out too. For three-dimensional space of the independent variables one of the groups acts transitively in the space of the solutions. This fact makes it possible to construct explicit (local) general solution if one of the partial solutions is given.
@article{TMF_1980_44_3_a12,
     author = {S. A. Vladimirov},
     title = {Symmetry groups of~the {Lagrangians} of~chiral fields with values on~$S^2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--413},
     year = {1980},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/}
}
TY  - JOUR
AU  - S. A. Vladimirov
TI  - Symmetry groups of the Lagrangians of chiral fields with values on $S^2$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 410
EP  - 413
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/
LA  - ru
ID  - TMF_1980_44_3_a12
ER  - 
%0 Journal Article
%A S. A. Vladimirov
%T Symmetry groups of the Lagrangians of chiral fields with values on $S^2$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 410-413
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/
%G ru
%F TMF_1980_44_3_a12
S. A. Vladimirov. Symmetry groups of the Lagrangians of chiral fields with values on $S^2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 410-413. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/

[1] L. D. Faddeev, Tr. Mezhdunarodnoi konferentsii po matematicheskim problemam v kvantovoi teorii polya i kvantovoi statistike, «Nauka», 1975, s. 218 | MR

[2] N. Kh. Ibragimov, Gruppy Li v nekotorykh voprosakh matematicheskoi fiziki, NGU, Novosibirsk, 1972 | MR

[3] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, «Nauka», 1978 | MR

[4] S. A. Vladimirov, Gruppy simmetrii differentsialnykh uravnenii i relyativistskie polya, Atomizdat, 1979 | Zbl