Symmetry groups of~the Lagrangians of~chiral fields with values on~$S^2$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 410-413
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			All the symmetry groups of the lagrangian of chiral field taking value in $S^2$ are constructed. It is shown that there are only seven different admissible point groups, five of which are infinite. The corresponding lagrangians are pointed out too. For three-dimensional space of the independent variables one of the groups acts transitively in the space of the solutions. This fact makes it possible to construct explicit (local) general solution if one of the partial solutions is given.
			
            
            
            
          
        
      @article{TMF_1980_44_3_a12,
     author = {S. A. Vladimirov},
     title = {Symmetry groups of~the {Lagrangians} of~chiral fields with values on~$S^2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--413},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/}
}
                      
                      
                    TY - JOUR AU - S. A. Vladimirov TI - Symmetry groups of~the Lagrangians of~chiral fields with values on~$S^2$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 410 EP - 413 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/ LA - ru ID - TMF_1980_44_3_a12 ER -
S. A. Vladimirov. Symmetry groups of~the Lagrangians of~chiral fields with values on~$S^2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 410-413. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a12/
