Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 307-320
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions of the presence of infrared and ultraviolet divergences of coefficient functions corresponding to arbitrary scalar Feynman diagrams and considered as tempered distributions are found. Analytical regularisation is used to analyse both types of divergences. It is shown that for any graph $\Gamma$ there is a domain of regularising complex parameters $\lambda_l$ in which the corresponding coefficient function is an analytical function of these parameters (in the distribution theory sense) possessing analytical continuation into all of $C^{\mathscr L}$ as a meromorphic function with two series of poles (“ultraviolet” and “infrared” ones). Infrared poles are located on hyperplanes defined by relationships: $\sum_{l\in\gamma}\lambda_l=-\Omega^\Gamma(\gamma)+n$, $n=0,1,\dots$ and $\Omega^\Gamma(\gamma)$ being the index of infrared divergency of a subgraph $\gamma$ of the graph $\Gamma$. These relationships are to be written for the graphs including massless particles only.
@article{TMF_1980_44_3_a1,
author = {V. A. Smirnov},
title = {Infrared and ultraviolet divergences of~the coefficient functions {of~Feynman} diagrams as~tempered {distributions.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--320},
year = {1980},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a1/}
}
TY - JOUR AU - V. A. Smirnov TI - Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 307 EP - 320 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a1/ LA - ru ID - TMF_1980_44_3_a1 ER -
%0 Journal Article %A V. A. Smirnov %T Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 307-320 %V 44 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a1/ %G ru %F TMF_1980_44_3_a1
V. A. Smirnov. Infrared and ultraviolet divergences of the coefficient functions of Feynman diagrams as tempered distributions. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 3, pp. 307-320. http://geodesic.mathdoc.fr/item/TMF_1980_44_3_a1/
[1] E. Speer, Ann. Inst. H. Poincaré, 23 (1975), 1 | MR
[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR
[3] E. Speer, J. Math. Phys., 9 (1968), 1404 | DOI
[4] F. Kharari, Teoriya grafov, «Mir», 1973 | MR
[5] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, «Nauka», 1976 | MR | Zbl
[6] N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971 | Zbl
[7] S. A. Anikin, O. I. Zavialov, Ann. Phys., 116 (1978), 135 | DOI | MR
[8] K. Khepp, Teoriya perenormirovok, «Nauka», 1974 ; О. И. Завьялов, Перенормированные диаграммы Фейнмана, «Наука», 1979 | MR | MR