Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 224-228

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that three-dimensional form of three-wave interaction for bounded envelopes, possesses an infinite sequence of conservation laws. Recurrent relation which enables one to obtain conservation laws of arbitrary order $N$ is presented. In contrast to the one-dimensional case the conservation laws are nonpolynomial for $N\geqslant3$ and include essentially nonlocal terms.
@article{TMF_1980_44_2_a7,
     author = {E. I. Shulman},
     title = {Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--228},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/}
}
TY  - JOUR
AU  - E. I. Shulman
TI  - Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 224
EP  - 228
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/
LA  - ru
ID  - TMF_1980_44_2_a7
ER  - 
%0 Journal Article
%A E. I. Shulman
%T Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 224-228
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/
%G ru
%F TMF_1980_44_2_a7
E. I. Shulman. Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 224-228. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/