Existence of a countable set of integrals of the motion for a system of three three-dimensional wave packets with resonance interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 224-228
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that three-dimensional form of three-wave interaction for bounded envelopes, possesses an infinite sequence of conservation laws. Recurrent relation which enables one to obtain conservation laws of arbitrary order $N$ is presented. In contrast to the one-dimensional case the conservation laws are nonpolynomial for $N\geqslant3$ and include essentially nonlocal terms.
@article{TMF_1980_44_2_a7,
author = {E. I. Shulman},
title = {Existence of~a~countable set of~integrals of~the motion for a~system of~three three-dimensional wave packets with resonance interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--228},
year = {1980},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/}
}
TY - JOUR AU - E. I. Shulman TI - Existence of a countable set of integrals of the motion for a system of three three-dimensional wave packets with resonance interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 224 EP - 228 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/ LA - ru ID - TMF_1980_44_2_a7 ER -
%0 Journal Article %A E. I. Shulman %T Existence of a countable set of integrals of the motion for a system of three three-dimensional wave packets with resonance interaction %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 224-228 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/ %G ru %F TMF_1980_44_2_a7
E. I. Shulman. Existence of a countable set of integrals of the motion for a system of three three-dimensional wave packets with resonance interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 224-228. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a7/
[1] B. B. Kadomtsev, Kollektivnye yavleniya v plazme, «Nauka», 1976 | MR
[2] N. Blombergen, Nelineinaya optika, «Mir», 1966
[3] Fizika okeana, tom 2, ed. A. S. Monin, «Nauka», 1978
[4] C. G. Lange, A. C. Newell, J. Appl. Mech., 20 (1973), 575 | DOI
[5] V. M. Zakharov, S. V. Manakov, Preprint IYaF 74-71, Novosibirsk, 1974 ; ЖЭТФ, 69 (1975), 1664 | MR
[6] S. V. Manakov, TMF, 28 (1976), 172 | MR | Zbl
[7] D. J. Kaup, St. in Appl. Math., 55 (1976), 9 | DOI | MR
[8] V. E. Zakharov, DAN SSSR, 228 (1976), 1314 | Zbl