Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 209-216
Cet article a éte moissonné depuis la source Math-Net.Ru
For a special class of classical dynamical systems with infinite-dimensional phase space, the uniqueness of Kubo–Martin–Schwinger states is proved.
@article{TMF_1980_44_2_a5,
author = {A. A. Arsen'ev},
title = {Uniqueness {of~Kubo{\textendash}Martin{\textendash}Schwinger} states for classical dynamical systems with infinite-dimensional phase space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {209--216},
year = {1980},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/}
}
TY - JOUR AU - A. A. Arsen'ev TI - Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 209 EP - 216 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/ LA - ru ID - TMF_1980_44_2_a5 ER -
%0 Journal Article %A A. A. Arsen'ev %T Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 209-216 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/ %G ru %F TMF_1980_44_2_a5
A. A. Arsen'ev. Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 209-216. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/
[1] M. Aizenman, S. Goldstein, C. Gruber, J. L. Lebowitz, P. Martin, Commun. Math. Phys., 53 (1977), 209 | DOI | MR
[2] P. R. Chernoff, J. E. Marsden, Properties of Infinite Demensional Hamiltonian Systems, Lecture Notes in Math., 425, 1974 | DOI | MR | Zbl
[3] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, tom I, «Nauka», 1971 | MR