Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 209-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a special class of classical dynamical systems with infinite-dimensional phase space, the uniqueness of Kubo–Martin–Schwinger states is proved.
@article{TMF_1980_44_2_a5,
     author = {A. A. Arsen'ev},
     title = {Uniqueness {of~Kubo{\textendash}Martin{\textendash}Schwinger} states for classical dynamical systems with infinite-dimensional phase space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--216},
     year = {1980},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 209
EP  - 216
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/
LA  - ru
ID  - TMF_1980_44_2_a5
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 209-216
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/
%G ru
%F TMF_1980_44_2_a5
A. A. Arsen'ev. Uniqueness of Kubo–Martin–Schwinger states for classical dynamical systems with infinite-dimensional phase space. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 209-216. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a5/

[1] M. Aizenman, S. Goldstein, C. Gruber, J. L. Lebowitz, P. Martin, Commun. Math. Phys., 53 (1977), 209 | DOI | MR

[2] P. R. Chernoff, J. E. Marsden, Properties of Infinite Demensional Hamiltonian Systems, Lecture Notes in Math., 425, 1974 | DOI | MR | Zbl

[3] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, tom I, «Nauka», 1971 | MR