Lagrangian classical relativistic mechanics of~a~system of~directly interacting particles.~I
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 194-208
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			General formulation of the one-time Lagrangian relativistic classical description of $N$ directly interacting particles is developed. A representation of a continuous transformation group of the Minkowski space (in particular, Poincare group) by the Lie–Backlund tangent transformations of the configuration space of the system is constructed. By means of this representation the system of linear differential equations expressing the Poincare invariance of the Lagrangian formalism is obtained and corresponding restrictions on the form of the generalised Lagrangian are studied. The exact relativistic description of the interaction is shown to demand the dependence of the Lagrangian on the infinite order derivatives. The results will be used in the second part of the work for finding a general form of the approximate relativistic interaction Lagrangian and for working out the method of constructing the Poincare invariant Newton type equations of motion and their first integrals.
			
            
            
            
          
        
      @article{TMF_1980_44_2_a4,
     author = {R. P. Gaida and Yu. B. Klyuchkovskii and V. I. Tretyak},
     title = {Lagrangian classical relativistic mechanics of~a~system of~directly interacting {particles.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {194--208},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a4/}
}
                      
                      
                    TY - JOUR AU - R. P. Gaida AU - Yu. B. Klyuchkovskii AU - V. I. Tretyak TI - Lagrangian classical relativistic mechanics of~a~system of~directly interacting particles.~I JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 194 EP - 208 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a4/ LA - ru ID - TMF_1980_44_2_a4 ER -
%0 Journal Article %A R. P. Gaida %A Yu. B. Klyuchkovskii %A V. I. Tretyak %T Lagrangian classical relativistic mechanics of~a~system of~directly interacting particles.~I %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 194-208 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a4/ %G ru %F TMF_1980_44_2_a4
R. P. Gaida; Yu. B. Klyuchkovskii; V. I. Tretyak. Lagrangian classical relativistic mechanics of~a~system of~directly interacting particles.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 194-208. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a4/
