Two-dimensional gauge fields with independent values of~the field tensor at~every point
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188
Voir la notice de l'article provenant de la source Math-Net.Ru
Gauge invariant quantum measure is constructed for the some class of the two-dimensional Euclidean gauge fields in particular with the Lagrangian $\mathscr L_E=\frac1{4g^2}(F_{\lambda\mu},F_{\lambda\mu})$, the gauge group being an arbitrary compact Lie group. The measure is expressed in terms of the contour variables. The corresponding stress tensor $F_{\lambda\mu}(x)$ is a Gaussian generalised random field with independent values at each point. Some generalizations for the ease of non-Gaussian stress tensors are pointed out.
@article{TMF_1980_44_2_a2,
author = {A. I. Oksak},
title = {Two-dimensional gauge fields with independent values of~the field tensor at~every point},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {172--188},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/}
}
TY - JOUR AU - A. I. Oksak TI - Two-dimensional gauge fields with independent values of~the field tensor at~every point JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 172 EP - 188 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/ LA - ru ID - TMF_1980_44_2_a2 ER -
A. I. Oksak. Two-dimensional gauge fields with independent values of~the field tensor at~every point. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/