Two-dimensional gauge fields with independent values of the field tensor at every point
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gauge invariant quantum measure is constructed for the some class of the two-dimensional Euclidean gauge fields in particular with the Lagrangian $\mathscr L_E=\frac1{4g^2}(F_{\lambda\mu},F_{\lambda\mu})$, the gauge group being an arbitrary compact Lie group. The measure is expressed in terms of the contour variables. The corresponding stress tensor $F_{\lambda\mu}(x)$ is a Gaussian generalised random field with independent values at each point. Some generalizations for the ease of non-Gaussian stress tensors are pointed out.
@article{TMF_1980_44_2_a2,
     author = {A. I. Oksak},
     title = {Two-dimensional gauge fields with independent values of~the field tensor at~every point},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--188},
     year = {1980},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/}
}
TY  - JOUR
AU  - A. I. Oksak
TI  - Two-dimensional gauge fields with independent values of the field tensor at every point
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 172
EP  - 188
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/
LA  - ru
ID  - TMF_1980_44_2_a2
ER  - 
%0 Journal Article
%A A. I. Oksak
%T Two-dimensional gauge fields with independent values of the field tensor at every point
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 172-188
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/
%G ru
%F TMF_1980_44_2_a2
A. I. Oksak. Two-dimensional gauge fields with independent values of the field tensor at every point. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/

[1] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, «Nauka», 1978 | MR

[2] K. Wilson, Phys. Rev., D10 (1974), 2445

[3] R. Balian, J. M. Drouffe, C. Itzykson, Phys. Rev., D10 (1974), 3376; D11 (1975), 2098; D11 (1975), 2104

[4] A. A. Migdal, ZhETF, 69 (1975), 810

[5] M. Lüscher, Absence of spontaneous symmetry breaking in Hamiltonian lattice gauge theories, DESY preprint, 1977 | MR

[6] K. Osterwalder, E. Seiler, Ann. Phys., 110 (1978), 440 | DOI | MR

[7] A. I. Oksak, “Integral Feinmana dlya dvumernogo kalibrovochnogo polya”, Trudy II Mezhdunarodnogo seminara po problemam fiziki vysokikh energii i teorii polya, IFVE, Serpukhov, 1979

[8] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4, Fizmatgiz, 1961 | MR

[9] S. Mandelstam, Ann. Phys., 19 (1962), 1 | DOI | MR | Zbl

[10] S. Mandelstam, Phys. Rev., 175 (1968), 1580 | DOI

[11] V. N. Popov, L. D. Faddeev, Teoriya vozmuschenii dlya kalibrovochno-invariantnykh polei, Preprint ITF, Kiev, 1967 | MR

[12] B. V. Gnedenko, Kurs teorii veroyatnostei, «Nauka», 1965 | MR

[13] A. L. Alimov, TMF, 11 (1972), 182 | MR

[14] S. Coleman, Ann. Phys., 101 (1976), 239 | DOI