Two-dimensional gauge fields with independent values of~the field tensor at~every point
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188

Voir la notice de l'article provenant de la source Math-Net.Ru

Gauge invariant quantum measure is constructed for the some class of the two-dimensional Euclidean gauge fields in particular with the Lagrangian $\mathscr L_E=\frac1{4g^2}(F_{\lambda\mu},F_{\lambda\mu})$, the gauge group being an arbitrary compact Lie group. The measure is expressed in terms of the contour variables. The corresponding stress tensor $F_{\lambda\mu}(x)$ is a Gaussian generalised random field with independent values at each point. Some generalizations for the ease of non-Gaussian stress tensors are pointed out.
@article{TMF_1980_44_2_a2,
     author = {A. I. Oksak},
     title = {Two-dimensional gauge fields with independent values of~the field tensor at~every point},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--188},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/}
}
TY  - JOUR
AU  - A. I. Oksak
TI  - Two-dimensional gauge fields with independent values of~the field tensor at~every point
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 172
EP  - 188
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/
LA  - ru
ID  - TMF_1980_44_2_a2
ER  - 
%0 Journal Article
%A A. I. Oksak
%T Two-dimensional gauge fields with independent values of~the field tensor at~every point
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 172-188
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/
%G ru
%F TMF_1980_44_2_a2
A. I. Oksak. Two-dimensional gauge fields with independent values of~the field tensor at~every point. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 172-188. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a2/