Multiparticle scattering in the theory of a degenerate Fermi gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 271-283
Cet article a éte moissonné depuis la source Math-Net.Ru
Statistical sum, expressed in terms of connected parts of many-body amplitudes is written down in the form of a continual integral. The third correction is found and the method of calculation of the next terms in the expansion of the energy of Fermi gas ground state in powers of the Fermi momentum is pointed out.
@article{TMF_1980_44_2_a12,
author = {E. A. Ivanchenko and V. D. Tsukanov},
title = {Multiparticle scattering in~the theory of~a~degenerate {Fermi} gas},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {271--283},
year = {1980},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a12/}
}
E. A. Ivanchenko; V. D. Tsukanov. Multiparticle scattering in the theory of a degenerate Fermi gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 271-283. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a12/
[1] T. D. Lee, C. N. Yang, Phys. Rev., 105 (1957), 1119 | DOI | MR
[2] V. M. Galitskii, ZhETF, 34 (1958), 151 | MR
[3] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, «Nauka», 1964 | Zbl
[4] J. Goldstone, Proc. Roy. Soc., A239 (1957), 267 | DOI | MR | Zbl
[5] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR
[6] Dzh. Teilor, Teoriya rasseyaniya, «Mir», 1975