Establishment of statistical equilibrium in a quantum chain of harmonic oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 263-270
Cet article a éte moissonné depuis la source Math-Net.Ru
A quantum chain of $N$ harmonic oscillators is considered using perturbation theory methods. The author derives the density matrix dynamics of a subsystem containing $N'$ oscillators when the whole chain relaxes from some initial pure state. The Gibbs distribution is shown to be the time-average thermodynamical limit of the relevant statistical operator. The presence of a weak anharmonic interaction in the system makes the density matrix deviations from the canonical distribution extremely rare.
@article{TMF_1980_44_2_a11,
author = {S. B. Rutkevich},
title = {Establishment of~statistical equilibrium in~a~quantum chain of~harmonic oscillators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--270},
year = {1980},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a11/}
}
S. B. Rutkevich. Establishment of statistical equilibrium in a quantum chain of harmonic oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 263-270. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a11/
[1] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, predislovie A. B. Migdala i V. A. Foka, Izd-vo AN SSSR, 1950
[2] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, ch. 1, «Nauka», 1976, str. 18 | MR
[3] N. N. Bogolyubov, Izbrannye trudy, t. 2, «Naukova dumka», Kiev, 1970, str. 77 | MR
[4] Kogerentnye sostoyaniya v kvantovoi teorii, «Mir», 1972, str. 45, 53 | MR
[5] B. I. Makshantsev, V. M. Finkelberg, TMF, 35 (1978), 224
[6] M. N. Yupina, TMF, 21 (1974), 367
[7] E. Khenli, V. Tirring, Elementarnaya kvantovaya teoriya polya, IL, 1963
[8] S. Chandrasekar, Stokhasticheskie problemy v fizike i astronomii, IL, 1947, str. 21, 29
[9] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 1, «Mir», 1977 | MR