Integral equations for radial distribution function with effective allowance for long-range interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 251-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New integral equations for radial distribution function are obtained on the basis of the conditions for generating functionals. The first equation generalises the well-known parametric integral equations in which the direct correlation function is a linear combination of the Percus–Yevick and hyper-netted-chain direct correlation functions. It is shown that there is no available approximation for the critical region between these approximations. Choosing the generating functional of a special form the second equation for the radial distribution function is derived. This equation is suitable for the correct description of the fluid equilibrium properties near the critical point as well as far from it. The equation of state connected with this integral equation is investigated in the critical, gaseous and intermediate regions. The question about universality of the critical behaviour is discussed.
@article{TMF_1980_44_2_a10,
     author = {V. M. Sysoev and A. V. Chalyi},
     title = {Integral equations for radial distribution function with effective allowance for long-range interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--262},
     year = {1980},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a10/}
}
TY  - JOUR
AU  - V. M. Sysoev
AU  - A. V. Chalyi
TI  - Integral equations for radial distribution function with effective allowance for long-range interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 251
EP  - 262
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a10/
LA  - ru
ID  - TMF_1980_44_2_a10
ER  - 
%0 Journal Article
%A V. M. Sysoev
%A A. V. Chalyi
%T Integral equations for radial distribution function with effective allowance for long-range interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 251-262
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a10/
%G ru
%F TMF_1980_44_2_a10
V. M. Sysoev; A. V. Chalyi. Integral equations for radial distribution function with effective allowance for long-range interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 251-262. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a10/

[1] N. N. Bogolyubov, Izbrannye trudy, t. 2, «Naukova dumka», Kiev, 1970 | MR

[2] N. P. Kovalenko, I. Z. Fisher, UFN, 108 (1972), 209 | DOI

[3] J. A. Barker, D. Henderson, Rev. Mod. Phys., 48 (1976), 587 | DOI | MR

[4] V. M. Sysoev, A. V. Chalyi, L. M. Chernenko, TMF, 22 (1975), 135

[5] M. I. Guerero, G. Saville, J. S. Rowlinson, Mol. Phys., 29 (1975), 1941 | DOI

[6] J. S. Rowlinson, Mol. Phys., 9 (1965), 217 | DOI

[7] T. Morita, Progr. Theor. Phys., 41 (1969), 339 | DOI

[8] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. 1, «Mir», 1978 | MR

[9] M. S. Wertheim, Phys. Rev. Lett., 10 (1963), 321 | DOI | MR | Zbl

[10] G. Rashbruk, Fizika prostykh zhidkostei, «Mir», 1971

[11] E. R. Muller, J. Chem. Phys., 61 (1974), 2027 | DOI

[12] D. Carley, Phys. Rev., 10A (1974), 863 | DOI

[13] F. Lado, J. Chem. Phys., 47 (1967), 4828 | DOI

[14] V. L. Kuzmin, TMF, 28 (1976), 389

[15] B. W. Ningham, J. Math. Phys., 4 (1963), 679 | DOI

[16] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, «Nauka», 1975 | MR

[17] M. E. Fisher, J. Math. Phys., 5 (1964), 944 | DOI | MR

[18] F. J. Wegner, Phys. Rev., 5B (1972), 4529 | DOI

[19] A. V. Chalyi, Ukr. fiz. zhurn., 18 (1973), 1887; 21 (1976), 474

[20] A. T. Berestov, ZhETF, 72 (1977), 348 | MR