Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 147-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of calculating the double logarithmic asymptotics of vertex functions suggested by the authors in [5] is further developed. Now the method is applied to calculating the asymptotics of quantum chromodynamics perturbation theory diagrams of arbitrary order including at most one three-gluon vertex. Cancellation of terms proportional to the Kasimir operator $B$ is demonstrated in every order for the singlet formfactor of the quark.
@article{TMF_1980_44_2_a0,
     author = {V. V. Belokurov and N. I. Usyukina},
     title = {Double logarithmic asymptotic behavior of~vertex functions in~quantum {chromodynamics.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--156},
     year = {1980},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a0/}
}
TY  - JOUR
AU  - V. V. Belokurov
AU  - N. I. Usyukina
TI  - Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 147
EP  - 156
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a0/
LA  - ru
ID  - TMF_1980_44_2_a0
ER  - 
%0 Journal Article
%A V. V. Belokurov
%A N. I. Usyukina
%T Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 147-156
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a0/
%G ru
%F TMF_1980_44_2_a0
V. V. Belokurov; N. I. Usyukina. Double logarithmic asymptotic behavior of vertex functions in quantum chromodynamics. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/TMF_1980_44_2_a0/

[1] V. V. Sudakov, ZhETF, 30 (1956), 87 | MR | Zbl

[2] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, 1976 | MR

[3] J. J. Carazzone et al., Phys. Rev., D13 (1975), 2286

[4] J. M. Cornwall, G. Tiktopoulos, Phys. Rev., D13 (1976), 3370

[5] V. V. Belokurov, N. I. Usyukina, TMF, 41 (1979), 157

[6] N. Nakanishi, Progr. Theor. Phys., 25 (1961), 296 | DOI

[7] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. 1, Fizmatgiz, 1958 | MR