Thermal conductivity of ferroelectrics with hydrogen bonds
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 103-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Kobayashi's model of ferroelectrics with piezoeffect in paraphase the operators of heat currents are derived. Then the retarded Green functions of pseudospins and phonons are found and the heat conductivity is calculated in the Kubo formalism near the Curie point. When comparing the theory with the experiment it turns out that the theory gives the correct critical singularities of the heat conductivity of Rochelle salt whereas for KDP-like ferroelectrics the Kobayashi model appears to be inadequate.
@article{TMF_1980_44_1_a8,
     author = {V. N. Kashcheev},
     title = {Thermal conductivity of~ferroelectrics with hydrogen bonds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {103--118},
     year = {1980},
     volume = {44},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a8/}
}
TY  - JOUR
AU  - V. N. Kashcheev
TI  - Thermal conductivity of ferroelectrics with hydrogen bonds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 103
EP  - 118
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a8/
LA  - ru
ID  - TMF_1980_44_1_a8
ER  - 
%0 Journal Article
%A V. N. Kashcheev
%T Thermal conductivity of ferroelectrics with hydrogen bonds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 103-118
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a8/
%G ru
%F TMF_1980_44_1_a8
V. N. Kashcheev. Thermal conductivity of ferroelectrics with hydrogen bonds. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 103-118. http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a8/

[1] Y. Suemune, J. Phys. Soc. Japan, 22 (1967), 735 | DOI

[2] D. Krstić, R. Blinc, Phys. Lett., A30 (1969), 387 | DOI

[3] M. Inoue, J. Phys. Soc. Japan, 26 (1969), 420 | DOI

[4] B. D. Silverman, Phys. Rev., 125 (1962), 1921 | DOI

[5] R. Blints, B. Zheksh, Segnetoelektriki i antisegnetoelektriki, «Mir», 1975

[6] K. K. Kobayashi, J. Phys. Soc. Japan, 24 (1968), 497 | DOI

[7] J. Villain, S. Stamenković, Phys. Stat. Sol., 15 (1966), 585 | DOI

[8] K. Nordtvedt, Phys. Rev., 173 (1968), 547 | DOI

[9] Y. Tuval, R. E. Nettleton, J. Phys. C, 9 (1976), 1159 | DOI

[10] V. N. Kascheev, Izv. AN LatvSSR, ser. fiz. i tekhn. nauk, 6 (1978), 12

[11] R. Kubo, Termodinamika neobratimykh protsessov, Sb., ed. D. N. Zubarev, IL, 1962, str. 345

[12] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971

[13] E. M. Iolin, FTT, 12 (1970), 1159 | MR

[14] N. N. Bogolyubov, S. V. Tyablikov, DAN SSSR, 126 (1959), 53 | MR | Zbl

[15] V. G. Vaks, Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrikov, «Nauka», 1973

[16] V. N. Kascheev, Izv. AN LatvSSR, ser. fiz. i tekhn. nauk, 6 (1969), 29

[17] V. N. Kascheev, Izv. AN LatvSSR, ser. fiz. i tekhn. nauk, 4 (1979), 10

[18] Dzh. Reislend, Fizika fononov, «Mir», 1975

[19] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[20] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika, «Mir», 1964

[21] K. Kawasaki, Ann. Phys., 61 (1970), 1 | DOI

[22] K. Garland, Fizicheskaya akustika, t. VII, «Mir», 1974, str. 61

[23] R. E. Nettleton, Y. Tuval, J. Phys. C, 10 (1977), 3179 | DOI

[24] I. A. Yakovlev, T. S. Velichkina, UFN, 63 (1957), 411 | DOI

[25] C. W. Fairall, W. Reese, Phys. Rev., B11 (1975), 2066 | DOI