Mathematical description of the evolution of an infinite classical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 63-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinite one-dimensional system of hard spheres is considered. The existence of thermodynamic limit for the solutions of the Cauchy problem for the Bogoliubov equations is proved in the case of arbitrary momenta and binary finite range potential of interaction. The solution is constructed for the initial data which are a local perturbation of the equilibrium thermodynamic functions.
@article{TMF_1980_44_1_a4,
     author = {P. V. Malyshev},
     title = {Mathematical description of~the evolution of~an~infinite classical system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {63--74},
     year = {1980},
     volume = {44},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/}
}
TY  - JOUR
AU  - P. V. Malyshev
TI  - Mathematical description of the evolution of an infinite classical system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 63
EP  - 74
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/
LA  - ru
ID  - TMF_1980_44_1_a4
ER  - 
%0 Journal Article
%A P. V. Malyshev
%T Mathematical description of the evolution of an infinite classical system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 63-74
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/
%G ru
%F TMF_1980_44_1_a4
P. V. Malyshev. Mathematical description of the evolution of an infinite classical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/

[1] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl

[2] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251

[3] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971

[4] D. Ya. Petrina, A. K. Vidybida, Trudy MI AN SSSR, 136 (1975), 370 | MR

[5] D. Ya. Petrina, TMF, 38 (1979), 230 | MR

[6] G. Gallavotti, O. E. Lanford, J. L. Lebowitz, J. Math. Phys., 11 (1970), 2898 | DOI | MR

[7] Ya. G. Sinai, Yu. M. Sukhov, TMF, 19 (1974), 344 | MR | Zbl

[8] Y. Takahashi, Sci. Papers Coll. Gen. Educ. Univ. Tokyo, 26 (1) (1976), 15 | MR | Zbl

[9] B. M. Gurevich, Yu. M. Sukhov, DAN SSSR, 242 (1978), 276 | Zbl

[10] C. Marchioro, A. Pellegrinotti, E. Presutti, Commun. Math. Phys., 40 (1975), 175 | DOI | MR

[11] R. L. Dobrushin, J. Fritz, Commun. Math. Phys., 55, 275 ; 57 (1977), 67 | DOI | MR | Zbl | DOI | MR

[12] O. E. Lanford, Commun. Math. Phys., 9 (1968), 176 ; 11 (1969), 257 | DOI | MR | Zbl | DOI | MR | Zbl

[13] E. Presutti, M. Pulvirenti, B. Tirozzi, Commun. Math. Phys., 47 (1976), 81 | DOI | MR

[14] Ya. G. Sinai, TMF, 11 (1972), 248 ; Вестн. МГУ, 1974, No 1, 152 | MR | MR

[15] Yu. M. Sukhov, DAN SSSR, 244 (1979), 1081 | MR | Zbl

[16] A. K. Vidybida, DAN USSR, ser. «A», 1975, no. 6, 542 | MR