Mathematical description of~the evolution of~an~infinite classical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 63-74
Voir la notice de l'article provenant de la source Math-Net.Ru
An infinite one-dimensional system of hard spheres is considered. The existence of thermodynamic limit for the solutions of the Cauchy problem for the Bogoliubov equations is proved in the case of arbitrary momenta and binary finite range potential of interaction. The solution is constructed for the initial data which are a local perturbation of the equilibrium thermodynamic functions.
@article{TMF_1980_44_1_a4,
author = {P. V. Malyshev},
title = {Mathematical description of~the evolution of~an~infinite classical system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {63--74},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/}
}
P. V. Malyshev. Mathematical description of~the evolution of~an~infinite classical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 44 (1980) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/TMF_1980_44_1_a4/