Comparative analysis of the stability of one-dimensional and spherically symmetric solitons of a scalar field with $J_\mu J^\mu$ self-interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 378-385
Cet article a éte moissonné depuis la source Math-Net.Ru
Variational method is used for analytical studying of the dynamical stability of solitons. Classes of testfunctions are found which preserve the charge of solitary lumps of the scalar field. Analytical study completed the results of the computer calculations for nonstationary problem shows that in contrast to the one-dimensional case in which the solitons are stable for all $|\omega|<1/\sqrt{2}$, the spherically symmetric solitons are unstable for all $|\omega|<1$ including the region where $H_s. The eigenvalue problem for finding the growth rates of instability on the linear stage of the latter is formulated.
@article{TMF_1980_43_3_a8,
author = {I. L. Bogolyubskii},
title = {Comparative analysis of~the stability of~one-dimensional and spherically symmetric solitons of~a~scalar field with $J_\mu J^\mu$ self-interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {378--385},
year = {1980},
volume = {43},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a8/}
}
TY - JOUR AU - I. L. Bogolyubskii TI - Comparative analysis of the stability of one-dimensional and spherically symmetric solitons of a scalar field with $J_\mu J^\mu$ self-interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 378 EP - 385 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a8/ LA - ru ID - TMF_1980_43_3_a8 ER -
%0 Journal Article %A I. L. Bogolyubskii %T Comparative analysis of the stability of one-dimensional and spherically symmetric solitons of a scalar field with $J_\mu J^\mu$ self-interaction %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 378-385 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a8/ %G ru %F TMF_1980_43_3_a8
I. L. Bogolyubskii. Comparative analysis of the stability of one-dimensional and spherically symmetric solitons of a scalar field with $J_\mu J^\mu$ self-interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 378-385. http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a8/
[1] R. Finkelstein, R. LeLevier, M. Ruderman, Phys. Rev., 83 (1951), 326 | DOI | MR | Zbl
[2] I. L. Bogolyubskii, Preprint OIYaI R2-11923, Dubna, 1978; Phys. Lett., 73A (1979), 87 | DOI | MR
[3] A. F. Rañada, M. F. Rañada, J. Math. Phys., 18 (1977), 2427 | DOI | MR
[4] V. B. Glasko, F. Leryust, Ya. P. Terletskii, S. F. Shushurin, ZhETF, 35 (1958), 452 ; Е. П. Жидков, В. П. Шириков, Препринт ОИЯИ Р-1319, Дубна, 1963 ; ЖВМ и МФ, 1964, No 4, 804 ; Z. Nehari, Proc. Roy. Irish. Acad., A62 (1963), 117 | Zbl | Zbl | Zbl | MR | Zbl