Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 291-308
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the imitarity condition, polynomial boundedness with respect to energy and
analyticity of the amplitude $F(s,z)$ in the $z=\cos\theta$-plane in a certain fixed complex neighbourhood of the physical points $-1$, it is shown that if the high-energy asymptotics of the amplitude is such that $|F(s,1)|\geqslant c(\ln s)^{2+\varepsilon}$, then such behaviour of the amplitude is completely determined by the nearest to the point $z=1$ singularity of the amplitude. The similar results are obtained for the spectrum of one-particle inclusive process integrated over the momentum values. It is also shown that if the absorptive part of the elastic scattering amplitude is analytic in a certain bounded region
of the $z$-plane with cuts along the real axis and $\sigma_{\mathrm {tot}}(s)>(\ln s)^{-1}$ then the discontinuity of the amplitude on the right-hand side cut is a sign-changing function of $z$.
@article{TMF_1980_43_3_a0,
author = {A. A. Logunov and M. A. Mestvirishvili and G. L. Rcheulishvili and A. P. Samokhin},
title = {Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--308},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/}
}
TY - JOUR AU - A. A. Logunov AU - M. A. Mestvirishvili AU - G. L. Rcheulishvili AU - A. P. Samokhin TI - Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 291 EP - 308 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/ LA - ru ID - TMF_1980_43_3_a0 ER -
%0 Journal Article %A A. A. Logunov %A M. A. Mestvirishvili %A G. L. Rcheulishvili %A A. P. Samokhin %T Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes %J Teoretičeskaâ i matematičeskaâ fizika %D 1980 %P 291-308 %V 43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/ %G ru %F TMF_1980_43_3_a0
A. A. Logunov; M. A. Mestvirishvili; G. L. Rcheulishvili; A. P. Samokhin. Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 291-308. http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/