Contribution from far singularities in the $\cos\theta$ plane to the scattering amplitude and to the distribution function of inclusive processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 291-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the imitarity condition, polynomial boundedness with respect to energy and analyticity of the amplitude $F(s,z)$ in the $z=\cos\theta$-plane in a certain fixed complex neighbourhood of the physical points $-1, it is shown that if the high-energy asymptotics of the amplitude is such that $|F(s,1)|\geqslant c(\ln s)^{2+\varepsilon}$, then such behaviour of the amplitude is completely determined by the nearest to the point $z=1$ singularity of the amplitude. The similar results are obtained for the spectrum of one-particle inclusive process integrated over the momentum values. It is also shown that if the absorptive part of the elastic scattering amplitude is analytic in a certain bounded region of the $z$-plane with cuts along the real axis and $\sigma_{\mathrm {tot}}(s)>(\ln s)^{-1}$ then the discontinuity of the amplitude on the right-hand side cut is a sign-changing function of $z$.
@article{TMF_1980_43_3_a0,
     author = {A. A. Logunov and M. A. Mestvirishvili and G. L. Rcheulishvili and A. P. Samokhin},
     title = {Contribution from far singularities in~the $\cos\theta$ plane to~the scattering amplitude and to~the distribution function of~inclusive processes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--308},
     year = {1980},
     volume = {43},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/}
}
TY  - JOUR
AU  - A. A. Logunov
AU  - M. A. Mestvirishvili
AU  - G. L. Rcheulishvili
AU  - A. P. Samokhin
TI  - Contribution from far singularities in the $\cos\theta$ plane to the scattering amplitude and to the distribution function of inclusive processes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 291
EP  - 308
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/
LA  - ru
ID  - TMF_1980_43_3_a0
ER  - 
%0 Journal Article
%A A. A. Logunov
%A M. A. Mestvirishvili
%A G. L. Rcheulishvili
%A A. P. Samokhin
%T Contribution from far singularities in the $\cos\theta$ plane to the scattering amplitude and to the distribution function of inclusive processes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 291-308
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/
%G ru
%F TMF_1980_43_3_a0
A. A. Logunov; M. A. Mestvirishvili; G. L. Rcheulishvili; A. P. Samokhin. Contribution from far singularities in the $\cos\theta$ plane to the scattering amplitude and to the distribution function of inclusive processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 3, pp. 291-308. http://geodesic.mathdoc.fr/item/TMF_1980_43_3_a0/

[1] A. A. Logunov, M. A. Mestvirishvili, G. L. Rcheulishvili, A. P. Samokhin, Preprint IFVE 78-130, Serpukhov, 1978

[2] M. A. Mestvirishvili, G. L. Rcheulishvili, A. P. Samokhin, Preprint IFVE 79-17, Serpukhov, 1979

[3] A. Martin, CERN preprint, Ref. Th. 968, 1968

[4] R. Boas, Entire Functions, New-York, 1954 | MR

[5] V. A. Novikov, YaF, 16 (1972), 603

[6] T. Kinoshita, J. Loeffel, A. Martin, Phys. Rev., 135 (1964), 1464 | DOI

[7] V. V. Ezhela, A. A. Logunov, M. A. Mestvirishvili, TMF, 6 (1971), 42 ; А. А. Логунов, М. А. Мествиришвили, О. А. Хрусталев, ЭЧАЯ, 3:3 (1972), 515; В. В. Ежела, В. А. Петров, Препринт ИФВЭ 72-51, Серпухов, 1972; А. А. Логунов, М. А. Мествиришвили, Г. Л. Рчеулишвили, А. П. Самохин, ТМФ, 28 (1976), 147 | MR

[8] A. A. Logunov, M. A. Mestvirishvili, Nguyen Van Hieu, Phys. Lett., 25B (1967), 611 ; А. А. Логунов, М. А. Мествиришвили, О. А. Хрусталев, ТМФ, 9, 3 ; (1971), 153 | DOI | Zbl

[9] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, TMF, 21 (1974), 305 | MR

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, «Nauka», 1973 ; И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, «Наука», 1971 | MR | MR