$S$ matrix with nonlocal classical sources
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 39-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For quantum systems interacting with nonlocal classical sources, the causality principle is formulated which generalises the Bogoliubov integral causality relationship valid for the case of local sources. It is shown that the ultraviolet divergences in the $S$-matrix constructed by means of this principle in the perturbation theory framework, can be removed in each order of the perturbation theory with the aid of “generalised Tauli–Villars regularisation” (which is equivalent to the $R$-operation in the local case).
@article{TMF_1980_43_1_a3,
     author = {V. A. Il'in and D. A. Slavnov},
     title = {$S$ matrix with nonlocal classical sources},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--47},
     year = {1980},
     volume = {43},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a3/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - D. A. Slavnov
TI  - $S$ matrix with nonlocal classical sources
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 39
EP  - 47
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a3/
LA  - ru
ID  - TMF_1980_43_1_a3
ER  - 
%0 Journal Article
%A V. A. Il'in
%A D. A. Slavnov
%T $S$ matrix with nonlocal classical sources
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 39-47
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a3/
%G ru
%F TMF_1980_43_1_a3
V. A. Il'in; D. A. Slavnov. $S$ matrix with nonlocal classical sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 39-47. http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a3/

[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1976 | MR

[2] R. Haag, Les problemes mathematiques de la theorie quantique des champs, Lille, 1957 ; Matematika, 6 (1962), 134 | Zbl

[3] R. Haag, B. Schroer, J. Math. Phys., 3 (1962), 248 | DOI | MR | Zbl

[4] V. A. Ilin, M. S. Imashev, D. A. Slavnov, Vestn. MGU, ser. fizika, 6 (1978), 35 | MR

[5] D. A. Slavnov, TMF, 17 (1973), 342 | MR | Zbl

[6] D. A. Slavnov, TMF, 25 (1975), 43 | MR | Zbl

[7] D. A. Slavnov, TMF, 19 (1974), 291 | MR

[8] I. A. Batalin, E. S. Fradkin, Tr. FIAN, 57 (1972), 29