On a method of constructing factorized $S$ matrices in elementary functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 117-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New factorised relativistic $S$-matrices are found in terms of elementary functions for two and more different types of particles.
@article{TMF_1980_43_1_a12,
     author = {I. V. Cherednik},
     title = {On~a~method of~constructing factorized $S$~matrices in~elementary functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--119},
     year = {1980},
     volume = {43},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a12/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - On a method of constructing factorized $S$ matrices in elementary functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 117
EP  - 119
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a12/
LA  - ru
ID  - TMF_1980_43_1_a12
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T On a method of constructing factorized $S$ matrices in elementary functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 117-119
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a12/
%G ru
%F TMF_1980_43_1_a12
I. V. Cherednik. On a method of constructing factorized $S$ matrices in elementary functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 117-119. http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a12/

[1] A. Zamolodchikov, Al. Zamolodchikov, Nucl. Phys., B133 (1978), 525 | DOI | MR

[2] A. Zamolodchikov, Al. Zamolodchikov, Preprint ITEP-35, 1978 | MR

[3] C. N. Yang, Phys. Rev., 168 (1968), 1920 | DOI

[4] M. Karowski, H.-I. Thun, Nucl. Phys., B130 (1977), 295 | DOI

[5] A. Zamolodchikov, Preprint ITEP-12, 1977

[6] R. Baxter, Annal. Phys., 70 (1972), 193 | DOI | MR | Zbl

[7] A. Zamolodchikov, Commun. Math. Phys., 69 (1979), 165 | DOI | MR

[8] I. V. Cherednik, DAN SSSR, 249 (1979), 1095 | MR | Zbl