Complex integral geometry and Penrose's representation of the solutions of Maxwell's equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Penrose transformation is presented in terms of integral geometry. The kernel of the transformation is characterized and inverse operator is constructed, in an explicit way.
@article{TMF_1980_43_1_a1,
     author = {S. G. Gindikin and G. M. Henkin},
     title = {Complex integral geometry and {Penrose's} representation of~the solutions {of~Maxwell's} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--31},
     year = {1980},
     volume = {43},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a1/}
}
TY  - JOUR
AU  - S. G. Gindikin
AU  - G. M. Henkin
TI  - Complex integral geometry and Penrose's representation of the solutions of Maxwell's equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 18
EP  - 31
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a1/
LA  - ru
ID  - TMF_1980_43_1_a1
ER  - 
%0 Journal Article
%A S. G. Gindikin
%A G. M. Henkin
%T Complex integral geometry and Penrose's representation of the solutions of Maxwell's equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 18-31
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a1/
%G ru
%F TMF_1980_43_1_a1
S. G. Gindikin; G. M. Henkin. Complex integral geometry and Penrose's representation of the solutions of Maxwell's equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 43 (1980) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/TMF_1980_43_1_a1/

[1] R. Penrose, J. Math. Phys., 8 (1967) | DOI | MR | Zbl

[2] R. Penrose, Rep. Math. Phys., 12 (1977), 65 | DOI | MR

[3] R. Penrose, “Massless fields and sheaf cohomology”, Twistor Newsletter, July 1977, 5, Oxford | MR

[4] D. Lerner, “The inverse twistor function for positive frequency fields”, Twistor Newsletter, July 1977, 5, Oxford | MR

[5] R. O. Wells, Jr., “Complex manifolds and mathematical physics”, Bull. Am. Math. Soc., 1:2 (1979), 296 | DOI | MR | Zbl

[6] I. M. Gelfand, M. I. Graev, Z. Ya. Shapiro, Funkts. analiz, 3 (1969), 24 | Zbl

[7] S. G. Gindikin, G. M. Khenkin, Funkts. analiz, 12 (1978), 6 | MR | Zbl

[8] R. O. Wells, Jr., Cohomology and the Penrose transform, Preprint, Rice University, 1978 | MR | Zbl

[9] A. Andreotti, F. Norguet, “Probleme de Levi et convexite holomorphe pour les classes de cohomologie”, Ann. Scuola Norm. Super. Pisa, 20:2 (1966), 197 | MR | Zbl

[10] G. M. Khenkin, UMN, 32 (1977), 57 | Zbl

[11] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem, I”, Ann. Scuola Norm. Super. Pisa, 26:2 (1972), 325 | MR | Zbl

[12] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR

[13] V. P. Palamodov, Lineinye differentsialnye operatory s postoyannymi koeffitsientami, «Nauka», 1967 | MR

[14] M. F. Atiyah, R. S. Ward, Commun. Math. Phys., 55 (1977), 117 | DOI | MR | Zbl

[15] N. Aronszajn, “General Gauchy Formulas in $\mathbf{C}^n$”, Seminaire Goulaoric-Schwartz 1975-1976, Exp. XXV, Ecole Polytechnique, Centre de Mathématiques, 1–28 | MR