Free energy in a one-dimensional spherical model with oscillating potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 3, pp. 406-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional spherical model with slowly decreasing and oscillating potential of the form $\rho(r)=r^{-1}\sin\alpha r$ is considered. The dependence of the free energy upon the boundary conditions is studied. It turns out that in the case of zero (finite, in general) boundary conditions the free energy $\psi_0(\beta)$ is analytical for all $\beta>0$. In the case of periodical boundary conditions the free energy $\psi(\beta)$ coincides with $\psi_0(\beta)$ for small $\beta$'s. However at some points $\beta_c$ the new branches of the free energy arise. Therefore in this situation the standard method of analytical continuation from the domain of small $\beta$'s is not applicable so far as it does not catch the phase transition.
@article{TMF_1980_42_3_a10,
     author = {L. V. Bogachev},
     title = {Free energy in~a~one-dimensional spherical model with oscillating potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--415},
     year = {1980},
     volume = {42},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/}
}
TY  - JOUR
AU  - L. V. Bogachev
TI  - Free energy in a one-dimensional spherical model with oscillating potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1980
SP  - 406
EP  - 415
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/
LA  - ru
ID  - TMF_1980_42_3_a10
ER  - 
%0 Journal Article
%A L. V. Bogachev
%T Free energy in a one-dimensional spherical model with oscillating potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1980
%P 406-415
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/
%G ru
%F TMF_1980_42_3_a10
L. V. Bogachev. Free energy in a one-dimensional spherical model with oscillating potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 3, pp. 406-415. http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/

[1] L. A. Pastur, A. L. Figotin, TMF, 35 (1978), 193 | MR

[2] T. H. Berlin, M. Kac, Phys. Rev., 86 (1952), 821 | DOI | MR | Zbl

[3] M. Kats, Ustoichivost i fazovye perekhody, «Mir», 1973 | MR

[4] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, 1961 | MR

[5] U. Grenander, G. Sege, Teplitsevy formy i ikh prilozheniya, IL, 1961 | MR

[6] L. V. Bogachev, TMF, 34 (1978), 387

[7] L. Gross, Commun. Math. Phys., 68 (1979), 9 | DOI | MR | Zbl