Free energy in a one-dimensional spherical model with oscillating potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 3, pp. 406-415
Cet article a éte moissonné depuis la source Math-Net.Ru
One-dimensional spherical model with slowly decreasing and oscillating potential of the form $\rho(r)=r^{-1}\sin\alpha r$ is considered. The dependence of the free energy upon the boundary conditions is studied. It turns out that in the case of zero (finite, in general) boundary conditions the free energy $\psi_0(\beta)$ is analytical for all $\beta>0$. In the case of periodical boundary conditions the free energy $\psi(\beta)$ coincides with $\psi_0(\beta)$ for small $\beta$'s. However at some points $\beta_c$ the new branches of the free energy arise. Therefore in this situation the standard method of analytical continuation from the domain of small $\beta$'s is not applicable so far as it does not catch the phase transition.
@article{TMF_1980_42_3_a10,
author = {L. V. Bogachev},
title = {Free energy in~a~one-dimensional spherical model with oscillating potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {406--415},
year = {1980},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/}
}
L. V. Bogachev. Free energy in a one-dimensional spherical model with oscillating potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 3, pp. 406-415. http://geodesic.mathdoc.fr/item/TMF_1980_42_3_a10/
[1] L. A. Pastur, A. L. Figotin, TMF, 35 (1978), 193 | MR
[2] T. H. Berlin, M. Kac, Phys. Rev., 86 (1952), 821 | DOI | MR | Zbl
[3] M. Kats, Ustoichivost i fazovye perekhody, «Mir», 1973 | MR
[4] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, 1961 | MR
[5] U. Grenander, G. Sege, Teplitsevy formy i ikh prilozheniya, IL, 1961 | MR
[6] L. V. Bogachev, TMF, 34 (1978), 387
[7] L. Gross, Commun. Math. Phys., 68 (1979), 9 | DOI | MR | Zbl