Theory of~stochastic processes in~quantum dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 232-242
Voir la notice de l'article provenant de la source Math-Net.Ru
Stochastic process of the motion of trial particle in dynamical system with the pair short-range interaction potential is considered. Quantum generalisation of N. N. Bogoliubov's kinetic equation [1] is developed which leads to the nonexponential law of decreasing of the velocity correlation function of trial particle in the system of classical hard spheres at large time intervals. Stochastic perturbation theory with respect to small density as well as the renormalization of Green's function of trial particle and the collision operators for the Liouville equation are used for deriving the equation.
@article{TMF_1980_42_2_a7,
author = {Yu. N. Barabanenkov and V. D. Ozrin and A. V. Shelest},
title = {Theory of~stochastic processes in~quantum dynamical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {232--242},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a7/}
}
TY - JOUR AU - Yu. N. Barabanenkov AU - V. D. Ozrin AU - A. V. Shelest TI - Theory of~stochastic processes in~quantum dynamical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1980 SP - 232 EP - 242 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a7/ LA - ru ID - TMF_1980_42_2_a7 ER -
Yu. N. Barabanenkov; V. D. Ozrin; A. V. Shelest. Theory of~stochastic processes in~quantum dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 232-242. http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a7/