Generally covariant kinetic equation for photons
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 213-222
Cet article a éte moissonné depuis la source Math-Net.Ru
Derivation of the kinetic equation for photons in gravitational field from the Maxwell equations is performed. Relativistic generalization of the Wigner representation is used. The kinetic equation obtained makes it possible to describe the distribution of photons over the states with definite helicity and polarisation and over the spin states as well.
@article{TMF_1980_42_2_a5,
author = {V. V. Gonyaev},
title = {Generally covariant kinetic equation for photons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {213--222},
year = {1980},
volume = {42},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a5/}
}
V. V. Gonyaev. Generally covariant kinetic equation for photons. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/TMF_1980_42_2_a5/
[1] N. A. Chernikov, DAN SSSR, 144 (1962), 89 | MR | Zbl
[2] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, «Nauka», 1966 | MR | Zbl
[3] M. A. Podurets, Astron. zh., 41 (1964), 1090 | Zbl
[4] Yu. N. Barabanenkov, V. D. Ozrin, O. A. Petrova, Problemy teorii gravitatsii i elementarnykh chastits, no. 8, Atomizdat, 1977, 119
[5] V. V. Gonyaev, Problemy teorii gravitatsii i elementarnykh chastits, no. 9, Atomizdat, 1978, 74
[6] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, «Nauka», 1969 | MR
[7] L. D. Landau, E. M. Lifshits, Teoriya polya, «Nauka», 1973 | MR
[8] E. Newman, R. Penrose, J. Math. Phys., 3 (1962), 566 | DOI | MR
[9] A. L. Zelmanov, DAN SSSR, 227 (1976), 78 | MR