The functional approach to turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 1, pp. 79-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact operator solution for the boundary problem with initial conditions is obtained for the space-time characteristic functional of random velocity field of incompressible fluid.
@article{TMF_1980_42_1_a8,
author = {A. A. Konstantinov},
title = {The functional approach to~turbulence},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {79--87},
year = {1980},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1980_42_1_a8/}
}
A. A. Konstantinov. The functional approach to turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 42 (1980) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/TMF_1980_42_1_a8/
[1] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, t. 2, «Nauka», 1967
[2] E. Hopf, J. Rat. Mech. Anal., 1:1 (1952), 87 | MR | Zbl
[3] R. M. Lewis, R. H. Kraichnan, Commun. Pure Appl. Math., 15 (1962), 397 | DOI | MR | Zbl
[4] Ch. Foyash, UMN, 29 (1974), 282
[5] A. A. Arsenev, Mat. sb., 101 (1976), 204 | MR | Zbl
[6] V. I. Tatarskii, ZhETF, 42 (1962), 1386 | MR
[7] I. Hosokawa, TR-96T, Nat. Aerospace Lab., Tokyo, 1965
[8] A. A. Slavnov, TMF, 22 (1975), 177 | MR | Zbl
[9] E. S. Fradkin, DAN SSSR, 100 (1955), 897 | MR | Zbl
[10] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, «Mir», 1968
[11] J. Rzewuski, Field Theory, Iliffe, London, 1969 | MR