Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 3, pp. 346-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the theory of the canonical ensemble, a rigorous mathematical description is given of equilibrium states of quantum systems that satisfy Bose or Fermi statistics at low densities. Study of the properties of the solutions of the corresponding Kirkwood–Salsburg equations leads to proof of the existence and uniqueness of limit partial density matrices of the canonical ensemble as analytic functions of the density; the equivalence of the canonical and the grand canonical ensembles in the thermodynamic limit is proved.
@article{TMF_1979_41_3_a5,
     author = {K. S. Matviichuk},
     title = {Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {346--367},
     year = {1979},
     volume = {41},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_3_a5/}
}
TY  - JOUR
AU  - K. S. Matviichuk
TI  - Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 346
EP  - 367
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_41_3_a5/
LA  - ru
ID  - TMF_1979_41_3_a5
ER  - 
%0 Journal Article
%A K. S. Matviichuk
%T Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 346-367
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1979_41_3_a5/
%G ru
%F TMF_1979_41_3_a5
K. S. Matviichuk. Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 3, pp. 346-367. http://geodesic.mathdoc.fr/item/TMF_1979_41_3_a5/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[2] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl

[3] B. I. Khatset, Naukovi zapiski Zhitomirskogo pedagogichnogo institutu, fiz.-mat., 3 (1956), 113

[4] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251

[5] D. Ruelle, Ann. Phys., 25 (1963), 209 | DOI | MR

[6] J. Ginibre, J. Math. Phys., 6 (1965), 238 | DOI | MR | Zbl

[7] J. Ginibre, J. Math. Phys., 6 (1965), 1432 | DOI | MR | Zbl

[8] R. A. Minlos, A. I. Khaitov, Tr. Mosk. matem. ob-va, 32 (1975), 147 | MR

[9] Yu. M. Sukhov, DAN SSSR, 195 (1970), 1024

[10] Yu. R. Dashyan, TMF, 34 (1978), 341

[11] I. L. Simyatitskii, TMF, 6 (1971), 230

[12] A. L. Khalfina, Matem. sb., 80 (1969), 3

[13] K. S. Matviichuk, Preprint ITF-75-67R, Kiev, 1975 | MR

[14] K. S. Matviichuk, DAN USSR, 12A (1975), 1084

[15] K. S. Matviichuk, DAN SSSR, 227 (1976), 318

[16] K. S. Matviichuk, TMF, 27 (1976), 360

[17] E. Nelson, J. Math. Phys., 5 (1964), 332 | DOI | MR | Zbl

[18] T. Khill, Statisticheskaya mekhanika, IL, 1960