Propagators and pair production in a homogeneous isotropic universe
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 245-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A covariant method of defining positive-frequency functions in an external gravitational field based on the postulate that the causal propagator propagates particles into the future and antiparticles into the past is applied to the homogeneous isotropic model of the Universe with scale factor $a(t)=t$. Postive- and negative-frequency wave functions are found that define the vacuums of scalar particles in the future asymptotic region and near the singularity. The probability of pair production in such a model is calculated. The cases when the spatial section of space-time is a fiat space or a three-dimensional sphere are considered.
@article{TMF_1979_41_2_a7,
     author = {O. Yu. Karmanov and M. B. Menskii},
     title = {Propagators and pair production in a~homogeneous isotropic universe},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--255},
     year = {1979},
     volume = {41},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a7/}
}
TY  - JOUR
AU  - O. Yu. Karmanov
AU  - M. B. Menskii
TI  - Propagators and pair production in a homogeneous isotropic universe
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 245
EP  - 255
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a7/
LA  - ru
ID  - TMF_1979_41_2_a7
ER  - 
%0 Journal Article
%A O. Yu. Karmanov
%A M. B. Menskii
%T Propagators and pair production in a homogeneous isotropic universe
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 245-255
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a7/
%G ru
%F TMF_1979_41_2_a7
O. Yu. Karmanov; M. B. Menskii. Propagators and pair production in a homogeneous isotropic universe. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a7/

[1] S. W. Hawking, Nature, 248 (1974), 30 | DOI

[2] S. W. Hawking, Commun. Math. Phys., 43 (1974), 199 | DOI | MR

[3] Bryce S. De Witt, Phys. Rep., 19 (1975), 295 | DOI

[4] L. Parker, Phys. Rev., 183 (1969), 1057 ; Phys. Rev., D3 (1971), 346 | DOI | Zbl

[5] A. A. Grib, S. G. Mamaev, YaF, 10 (1969), 1276 | MR

[6] I. V. Volovich, V. A. Zagrebnov, V. P. Frolov, TMF, 33 (1977), 3 | MR | Zbl

[7] D. J. Raine, C. P. Winlove, Phys. Rev., D12 (1975), 946

[8] W. G. Unruh, Phys. Rev., D14 (1976), 870

[9] S. A. Fulling, J. Phys. A, 10 (1977), 917 | DOI | MR

[10] Ya. B. Zeldovich, Pisma ZhETF, 12 (1970), 443

[11] Ya. B. Zeldovich, A. A. Starobinskii, ZhETF, 61 (1971), 2161

[12] J. B. Hartle, S. W. Hawking, Phys. Rev., D13 (1976), 2188

[13] D. M. Chitre, J. B. Hartle, Phys. Rev., D16 (1977), 251 | MR

[14] G. W. Gibbons, S. W. Hawking, Phys. Rev., D15 (1977), 2738 | MR

[15] D. G. Boulware, Phys. Rev., D13 (1976), 2169

[16] G. W. Gibbons, M. J. Perry, Proc. Roy. Soc. Lond., A358 (1978), 467 | DOI | MR

[17] M. B. Menskii, TMF, 18 (1974), 190 | MR

[18] M. B. Menskii, Metod indutsirovannykh predstavlenii: prostranstvo-vremya i kontseptsiya chastits, «Nauka», 1976

[19] M. B. Mensky, Commun. Math. Phys., 47 (1976), 97 | DOI | MR | Zbl

[20] M. B. Mensky, Proceed. 18-th Int. Conf. High Energy Phys., v. II (Tbilisi, 1976), Dubna, 1977, 130

[21] M. B. Menskii, Pisma ZhETF, 24 (1976), 561

[22] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[23] M. B. Mensky, Letters in Math. Phys., 2 (1978), 175 | DOI | MR