Chiral field model and universality in three-dimensional space.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the noncanonically renormalized (with soft mass) $1/N$ expansion of the $O(N)$ $(\varphi^2)_3^2$ model (which is free of infrared divergences) constructed in Part I we prove the existence of a critical limit and that this limit coincides with the conformally invariant critical theory of the $O(N)$ – invariant chiral field. The proof makes essential use of generalized quantum chirality relations of the limiting universal theory. We construct a $1/N$ expansion of the superrenormalizable “temperature” and “magnetic” perturbations of the pre-asymptotic and critical theories, which is important for the field-theoretical description of critical behavior.
@article{TMF_1979_41_2_a5,
     author = {E. R. Nisimov and S. I. Pacheva},
     title = {Chiral field model and universality in three-dimensional {space.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--235},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/}
}
TY  - JOUR
AU  - E. R. Nisimov
AU  - S. I. Pacheva
TI  - Chiral field model and universality in three-dimensional space.~II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 220
EP  - 235
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/
LA  - ru
ID  - TMF_1979_41_2_a5
ER  - 
%0 Journal Article
%A E. R. Nisimov
%A S. I. Pacheva
%T Chiral field model and universality in three-dimensional space.~II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 220-235
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/
%G ru
%F TMF_1979_41_2_a5
E. R. Nisimov; S. I. Pacheva. Chiral field model and universality in three-dimensional space.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/