Chiral field model and universality in three-dimensional space. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the noncanonically renormalized (with soft mass) $1/N$ expansion of the $O(N)$ $(\varphi^2)_3^2$ model (which is free of infrared divergences) constructed in Part I we prove the existence of a critical limit and that this limit coincides with the conformally invariant critical theory of the $O(N)$ – invariant chiral field. The proof makes essential use of generalized quantum chirality relations of the limiting universal theory. We construct a $1/N$ expansion of the superrenormalizable “temperature” and “magnetic” perturbations of the pre-asymptotic and critical theories, which is important for the field-theoretical description of critical behavior.
@article{TMF_1979_41_2_a5,
     author = {E. R. Nisimov and S. I. Pacheva},
     title = {Chiral field model and universality in three-dimensional {space.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--235},
     year = {1979},
     volume = {41},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/}
}
TY  - JOUR
AU  - E. R. Nisimov
AU  - S. I. Pacheva
TI  - Chiral field model and universality in three-dimensional space. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 220
EP  - 235
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/
LA  - ru
ID  - TMF_1979_41_2_a5
ER  - 
%0 Journal Article
%A E. R. Nisimov
%A S. I. Pacheva
%T Chiral field model and universality in three-dimensional space. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 220-235
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/
%G ru
%F TMF_1979_41_2_a5
E. R. Nisimov; S. I. Pacheva. Chiral field model and universality in three-dimensional space. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/

[1] E. R. Nisimov, S. I. Pacheva, TMF, 41 (1979), 55 | MR

[2] J. Lowenstein, W. Zimmermann, Nucl. Phys., B86 (1975), 77 ; Commun. Math. Phys., 46 (1976), 105 ; J. Lowenstein, Commun. Math. Phys., 47 (1976), 53 | DOI | DOI | MR | DOI | MR | Zbl

[3] W. Zimmermann, Lectures on elementary particles and quantum field theory, eds. S. Deser, M. Grisaru, H. Pendleton, MIT Press, Cambridge, 1970; W. Zimmermann, Ann. Phys., 77 (1973), 536 | DOI | MR

[4] J. Lowenstein, Commun. Math. Phys., 24 (1971), 1 | DOI | MR | Zbl

[5] T. Clark, J. Lowenstein, Nucl. Phys., B113 (1976), 109 | DOI | MR

[6] I. Ya. Aref'eva, E. R. Nissimov, S. J. Pacheva, LOMI preprint E-3-1978, Leningrad, 1978

[7] S. Weinberg, Phys. Rev., 118 (1960), 838 | DOI | MR | Zbl

[8] B. Schroer, Phys. Rev., B8 (1973), 4200 ; B. Schroer, F. Jegerlehner, Acta Phys. Austr., Suppl., XI (1973), 389; F. Jegerlehner, Fortschr. Phys., 23 (1975), 71 | DOI | DOI

[9] C. Di Castro, G. Jona-Lasinio, L. Peliti, Ann. Phys., 87 (1974), 327 | DOI

[10] E. Brezin, J. G. Le Guillou, J. Zinn-Justin, Phase transitions and critical phenomena, v. 6, eds. G. Domb, M. Green, Academic Press, 1976 | MR

[11] R. Abe, S. Hikami, Progr. Theor. Phys., 49 (1973), 442 | DOI

[12] J. Lowenstein, W. Zimmermann, Commun. Math. Phys., 44 (1975), 73 | DOI | MR

[13] W. Zimmermann, Commun. Math. Phys., 15 (1969), 208 | DOI | MR | Zbl

[14] M. Gomes, J. Lowenstein, W. Zimmermann, Commun. Math. Phys., 39 (1974), 81 | DOI | MR