Chiral field model and universality in three-dimensional space.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of the noncanonically renormalized (with soft mass) $1/N$ expansion of the $O(N)$ $(\varphi^2)_3^2$ model (which is free of infrared divergences) constructed in Part I we prove the existence of a critical limit and that this limit coincides with the conformally invariant critical theory of the $O(N)$ – invariant chiral field. The proof makes essential use of generalized quantum chirality relations of the limiting universal theory. We construct a $1/N$ expansion of the superrenormalizable “temperature” and “magnetic”
perturbations of the pre-asymptotic and critical theories, which is important for the
field-theoretical description of critical behavior.
@article{TMF_1979_41_2_a5,
author = {E. R. Nisimov and S. I. Pacheva},
title = {Chiral field model and universality in three-dimensional {space.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--235},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/}
}
TY - JOUR AU - E. R. Nisimov AU - S. I. Pacheva TI - Chiral field model and universality in three-dimensional space.~II JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1979 SP - 220 EP - 235 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/ LA - ru ID - TMF_1979_41_2_a5 ER -
E. R. Nisimov; S. I. Pacheva. Chiral field model and universality in three-dimensional space.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 220-235. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a5/