Riemannian superspaces of minimal dimensionality
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156

Voir la notice de l'article provenant de la source Math-Net.Ru

Superspaces with dimensionality $n=n_b+n_f$, where $n_b$ is the dimensionality of the Bose coordinates and $n_f$ is the dimensionality of the Grassmann coordinates, are classified. It is shown that Einstein superspaces with dimensionalities $(n_b,n_f)=(0,2)$, $(0,4)$, $(1,2)$ are spaces of constant curvature.
@article{TMF_1979_41_2_a0,
     author = {V. P. Akulov and D. V. Volkov},
     title = {Riemannian superspaces of minimal dimensionality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/}
}
TY  - JOUR
AU  - V. P. Akulov
AU  - D. V. Volkov
TI  - Riemannian superspaces of minimal dimensionality
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 147
EP  - 156
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/
LA  - ru
ID  - TMF_1979_41_2_a0
ER  - 
%0 Journal Article
%A V. P. Akulov
%A D. V. Volkov
%T Riemannian superspaces of minimal dimensionality
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 147-156
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/
%G ru
%F TMF_1979_41_2_a0
V. P. Akulov; D. V. Volkov. Riemannian superspaces of minimal dimensionality. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/