Riemannian superspaces of minimal dimensionality
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156
Voir la notice de l'article provenant de la source Math-Net.Ru
Superspaces with dimensionality $n=n_b+n_f$, where $n_b$ is the dimensionality of the Bose coordinates and $n_f$ is the dimensionality of the Grassmann coordinates, are classified. It is shown that Einstein superspaces with dimensionalities $(n_b,n_f)=(0,2)$, $(0,4)$, $(1,2)$ are spaces of constant curvature.
@article{TMF_1979_41_2_a0,
author = {V. P. Akulov and D. V. Volkov},
title = {Riemannian superspaces of minimal dimensionality},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--156},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/}
}
V. P. Akulov; D. V. Volkov. Riemannian superspaces of minimal dimensionality. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/