Riemannian superspaces of minimal dimensionality
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156
Cet article a éte moissonné depuis la source Math-Net.Ru
Superspaces with dimensionality $n=n_b+n_f$, where $n_b$ is the dimensionality of the Bose coordinates and $n_f$ is the dimensionality of the Grassmann coordinates, are classified. It is shown that Einstein superspaces with dimensionalities $(n_b,n_f)=(0,2)$, $(0,4)$, $(1,2)$ are spaces of constant curvature.
@article{TMF_1979_41_2_a0,
author = {V. P. Akulov and D. V. Volkov},
title = {Riemannian superspaces of minimal dimensionality},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--156},
year = {1979},
volume = {41},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/}
}
V. P. Akulov; D. V. Volkov. Riemannian superspaces of minimal dimensionality. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/TMF_1979_41_2_a0/
[1] D. V. Volkov, V. A. Soroka, Pisma ZhETF, 18 (1973), 528; ТМФ, 20:3 (1974), 291
[2] D. Z. Freedman, P. van Niewenhuizen, S. Ferrara, Phys. Rev., D13 (1976), 3214 | MR
[3] V. I. Ogievetskii, E. Sokachev, Tr. IV Mezhdunar. konf. po nelok. teorii polya, Alushta, 1976
[4] R. Arnowitt, P. Nath, B. Zumino, Phys. Lett., 56B (1975), 81 | DOI | MR
[5] V. P. Akulov, D. V. Volkov, V. A. Soroka, Pisma ZhETF, 22 (1975), 396; ТМФ, 31 (1977), 12 | MR
[6] B. Zumino, CERN preprint TH 2120, 1975
[7] L. Brink et al., Phys. Lett., 64B (1976), 435 | DOI
[8] A. Neveu, J. Schwartz, Nucl. Phys., B31 (1973), 39
[9] J. Wess, B. Zumino, Phys. Lett., 66B (1977), 361 | DOI | MR
[10] A. Z. Petrov, Prostranstva Einshteina, Fizmatgiz, 1961 | MR | Zbl