Regular solutions of the Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 1, pp. 33-39
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Liouville equation $\varphi_{tt}(t,x)-\varphi_{xx}(t,x)\pm(m^2/2)e^{\varphi(t,x)}=0$ the Goursat problem is solved explicitly and the properties of regular solutions are investigated. The Liouville equation is regarded as a model of a self-interacting scalar field. The asymptotic fields, the classical $S$ matrix, and observable quantities such as the energy and momentum are constructed.
@article{TMF_1979_41_1_a4,
author = {G. P. Jorjadze},
title = {Regular solutions of the {Liouville} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {33--39},
year = {1979},
volume = {41},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1979_41_1_a4/}
}
G. P. Jorjadze. Regular solutions of the Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 41 (1979) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/TMF_1979_41_1_a4/
[1] J. Liouvill, J. Math. Pures Appl., 18 (1853), 71
[2] G. P. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, DAN SSSR, 243 (1978), 318 | MR | Zbl
[3] A. K. Pogrebkov, DAN SSSR, 244 (1979), 873 | MR | Zbl
[4] V. A. Andreev, TMF, 29 (1976), 2
[5] G. P. Jorjadze, A. K. Pogrebkov, M. K. Polivanov, Preprint IC/78/126, Trieste, 1978 | MR