Influence of the Pauli principle on the properties of two-phonon states
Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 2, pp. 245-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in the framework of the quasiparticle-phonon model of the nucleus the commutation relations between quasiparticles forming the phonons can be correctly taken into account. The case of even-even deformed nuclei is investigated. Exact and approximate secular equations are obtained. It is shown that the corrections associated with allowance for the Pauli principle are large for the two-phonon components of the wave functions formed from identical phonons.
@article{TMF_1979_40_2_a6,
     author = {R. V. Jolos and Kh. L. Molina and V. G. Solov'ev},
     title = {Influence of the {Pauli} principle on the properties of two-phonon states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--250},
     year = {1979},
     volume = {40},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1979_40_2_a6/}
}
TY  - JOUR
AU  - R. V. Jolos
AU  - Kh. L. Molina
AU  - V. G. Solov'ev
TI  - Influence of the Pauli principle on the properties of two-phonon states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1979
SP  - 245
EP  - 250
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1979_40_2_a6/
LA  - ru
ID  - TMF_1979_40_2_a6
ER  - 
%0 Journal Article
%A R. V. Jolos
%A Kh. L. Molina
%A V. G. Solov'ev
%T Influence of the Pauli principle on the properties of two-phonon states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1979
%P 245-250
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1979_40_2_a6/
%G ru
%F TMF_1979_40_2_a6
R. V. Jolos; Kh. L. Molina; V. G. Solov'ev. Influence of the Pauli principle on the properties of two-phonon states. Teoretičeskaâ i matematičeskaâ fizika, Tome 40 (1979) no. 2, pp. 245-250. http://geodesic.mathdoc.fr/item/TMF_1979_40_2_a6/

[1] N. N. Bogolyubov, DAN SSSR, 119 (1958), 224

[2] N. N. Bogolyubov, V. G. Solovev, DAN SSSR, 124 (1959), 1011 | MR | Zbl

[3] S. V. Tyablikov, DAN SSSR, 121 (1959), 250

[4] V. G. Solovev, Problemy teoreticheskoi fiziki, Sb., ed. D. I. Blokhintsev, «Nauka», 1969, 365 | MR

[5] N. N. Bogolyubov, UFN, 67 (1959), 549 | DOI | MR

[6] A. M. Lein, Teoriya yadra, Atomizdat, 1967

[7] V. G. Solovev, Teoriya slozhnykh yader, «Nauka», 1971

[8] S. T. Belyaev, Collective Exitations in Nuclei, Gordon and Breach, New York, 1968

[9] M. Baranger, M. Veneroni, Ann. Physic, 114 (1978), 123 | DOI | MR

[10] V. G. Solovev, EChAYa, 9 (1978), 580

[11] L. A. Malov, V. G. Soloviev, Nucl. Phys., A270 (1976), 87 ; Л. А. Малов, В. Г. Соловьев, ЯФ, 26 (1977), 719 | DOI

[12] V. G. Soloviev, Ch. Stoyanov, A. I. Vdovin, Nucl. Phys., A288 (1977), 376 | DOI

[13] V. G. Soloviev, Ch. Stoyanov, V. V. Voronov, Nucl. Phys., A304 (1978), 503 | DOI

[14] S. T. Belyaev, V. G. Zelivinsky, Nucl. Phys., 39 (1962), 582 ; T. Marumori, M. Yamanura, A. Tokunage, Progr. Theor. Phys., 31 (1964), 1009 | DOI | DOI

[15] F. Dönau, D. Janssen, S. Frauendorf, R. V. Jolos, Nucl. Phys., A262 (1976), 231

[16] V. G. Soloviev, Atomic Energy Review, 3:2 (1965), 117